On the Shioda Conjecture for Diagonal Projective Varieties over Finite Fields

Matthew Lerner-Brecher, Benjamin Church, Chunying Huangdai, Ming Jing, Navtej Singh
January 15, 2022

1 Affine Varieties

Theorem 1.1. Suppose X is the affine variety over F_{q} defined by the zero set of:

$$
a_{0} x_{0}^{n_{0}}+a_{1} x_{1}^{n_{1}}+\cdots+a_{r} x_{r}^{n_{r}}
$$

For each $0 \leq i \leq r$, let $L_{i}=\operatorname{lcm}\left(\left.\left\{n_{j}\right\}\right|_{j \neq i}\right)$ and let $n_{i}^{\prime}=\operatorname{gcd}\left(n_{i}, L_{i}\right)$. Then the affine variety X^{\prime} over \mathbb{F}_{q} defined by the zero set of:

$$
a_{0} x_{0}^{n_{0}^{\prime}}+a_{1} x_{1}^{n_{1}^{\prime}}+\cdots+a_{r} x_{r}^{n_{r}^{\prime}}
$$

has $\left|X^{\prime}\right|=|X|$.
Proof. Let $d_{i}=\operatorname{gcd}\left(n_{i}, q-1\right)$ and let $d_{i}^{\prime}=\operatorname{gcd}\left(n_{i}^{\prime}, q-1\right)$. By equation (3) from Weil's paper we have:

$$
|X|=q^{r}+(q-1) \sum_{\alpha \in S} \chi_{\alpha_{0}}\left(a_{0}^{-1}\right) \cdots \chi_{\alpha_{r}}\left(a_{r}^{-1}\right) j(\alpha)
$$

where $S=\left\{\alpha=\left(\alpha_{0}, \ldots, \alpha_{r}\right): d_{i} \alpha_{i} \in \mathbb{Z} ; \sum \alpha_{i} \in \mathbb{Z} ; 0<\alpha_{i}<1\right\}$. Similarly, we get:

$$
\left|X^{\prime}\right|=q^{r}+(q-1) \sum_{\alpha \in S^{\prime}} \chi_{\alpha_{0}}\left(a_{0}^{-1}\right) \cdots \chi_{\alpha_{r}}\left(a_{r}^{-1}\right) j(\alpha)
$$

where $S^{\prime}=\left\{\alpha=\left(\alpha_{0}, \ldots, \alpha_{r}\right): d_{i}^{\prime} \alpha_{i} \in \mathbb{Z} ; \sum \alpha_{i} \in \mathbb{Z} ; 0<\alpha_{i}<1\right\}$. We will show that $S=S^{\prime}$ and hence the two expressions must be equal. Note that as $n_{i}^{\prime}\left|n_{i}, d_{i}^{\prime}\right| d_{i}$. Thus $d_{i}^{\prime} \alpha \in \mathbb{Z}$ implies $d_{i} \alpha \in \mathbb{Z}$. As such, $S^{\prime} \subset S$. Now suppose $\alpha \in S$. If $d_{i}=d_{i}^{\prime}$ for all i, the two sets are equal and we're done. As such assume j is such that $d_{j}^{\prime} \neq d_{j}$. As gcd is commutative, $d_{j}^{\prime}=\operatorname{gcd}\left(d_{j}, L_{j}\right)$. Then we can write, $d_{j}=d_{j}^{\prime} m$. Now for each i, as $d_{i} \alpha_{i} \in \mathbb{Z}$ and $0<\alpha_{i}<1$, there exists a_{i} such that $\alpha_{i}=\frac{b_{i}}{d_{i}}$. Now, as $\alpha \in S$,

$$
\frac{b_{j}}{d_{j}^{\prime} m}+\sum_{i \neq j} \frac{b_{i}}{d_{i}} \in \mathbb{Z}
$$

Let $\frac{B}{D}=\sum_{i \neq j} \frac{b_{i}}{d_{i}} \in \mathbb{Z}$ be a fraction in simplest form. Thus we have

$$
\frac{b_{j}}{d_{j}^{\prime} m}+\sum_{i \neq j} \frac{b_{i}}{d_{i}}=\frac{b_{j}}{d_{j}^{\prime} m}+\frac{B}{D}=\frac{b_{j} D+d_{j}^{\prime} m A}{d_{j}^{\prime} m D} \in \mathbb{Z}
$$

As $d_{i}\left|n_{i}\right| L_{j}$ for all $i \neq j$, we have $D \mid L_{j}$. For the above expression to be an integer we must have $d_{j}^{\prime} m \mid b_{j} D$. As $d_{j}^{\prime}=\operatorname{gcd}\left(d_{j}^{\prime} m, D\right)$, this implies $m \mid b_{j}$. However, this means $d_{j}^{\prime} \alpha_{j}=\frac{b_{j}}{m} \in \mathbb{Z}$. By our reasoning, this holds for all j. Thus $S^{\prime} \subset S$.

As explained before, this implies $S=S^{\prime}$ and thus $|X|=\left|X^{\prime}\right|$.

Theorem 1.2. Let X be the affine variety over \mathbb{F}_{q} defined by the zero set of:

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}
$$

where the a_{i} are nonzero and the n_{i} are positive integers. If for all $1 \leq i \leq r$ we have $\operatorname{gcd}\left(n_{0}, n_{i}\right)=1$, then X is supersingular.

Proof. By theorem 1.1, X has the same number of solutions as the variety X^{\prime} defined by the zero set of

$$
a_{0} x_{0}^{n_{0}^{\prime}}+\cdots+a_{r} x_{r}^{n_{r}^{\prime}}
$$

As n_{0} is relatively prime to the other $n_{i}, n_{0}^{\prime}=1$. However, then $a_{0} x_{0}$ achieves every element of \mathbb{F}_{q} exactly once. Hence, regardless of the choice of x_{1}, \ldots, x_{r} there is precisely one value of x_{0} for which the defining equation of X^{\prime} is 0 . Thus $|X|=q^{r}$. By the same reasoning if we define N_{k} to be the number of points of X defined over $\mathbb{F}_{q^{k}}$, we have

$$
N_{k}=\left(q^{k}\right)^{r}=q^{r k}
$$

As such the zeta function ζ_{X} is:

$$
\begin{aligned}
\zeta_{X}(T) & =\exp \left(\sum_{m \geq 1} \frac{q^{r m}}{m} T^{m}\right) \\
& =\exp \left(-\log \left(1-q^{r} T\right)\right) \\
& =\frac{1}{1-q^{r} T}
\end{aligned}
$$

which implies that X is supersingular, as desired.

2 Projective Varieties

2.1 Conversion to Weighted Projective Space

Note on notation. From now on, unless otherwise specified, let X be an affine variety over \mathbb{F}_{q} defined to be the zero set of

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}
$$

such that the a_{i} are nonzero. Let $L=\operatorname{lcm}\left(n_{i}\right)$ and $N_{i}=L / n_{i}$. For a given point $P=\left(P_{0}, \ldots, P_{r}\right)$ let

$$
S_{P}=\left\{N_{i}: P_{i} \neq 0\right\}
$$

Let $d_{P}=\operatorname{gcd}\left(S_{P}\right)$. We also define V to be the image of X in weighted projective space.
Theorem 2.1. Suppose λ acts on X as follows: For any point $\left(x_{0}, \ldots, x_{r}\right)$ we have

$$
\lambda \cdot\left(x_{0}, \ldots, x_{r}\right)=\left(\lambda^{N_{0}} x_{0}, \ldots, \lambda^{N_{r}} x_{r}\right)
$$

Then for all $P=\left(P_{0}, \ldots, P_{r}\right) \in X$,

$$
|\operatorname{Stab}(P)|=\operatorname{gcd}\left(S_{P}\right)
$$

In particular, $P_{i} \neq 0$ for all $i,|\operatorname{Stab}(P)|=1$.
Proof. Suppose $\lambda \cdot P=P$. Then we have:

$$
\left(\left(\lambda^{N_{0}}-1\right) P_{0}, \ldots,\left(\lambda^{N_{r}}-1\right) P_{r}\right)=(0, \ldots, 0)
$$

This holds if and only if $\lambda^{N_{i}}=1$ for all $P_{i} \neq 0$. This is equivalent to $\lambda^{g \mathrm{gcd}\left(d_{P}, q-1\right)}=1$, which has exactly $\operatorname{gcd}\left(d_{P}, q-1\right)$ solutions.

Corollary 2.1.1.

$$
|V|=\sum_{P \in X /\{0\}} \frac{\operatorname{gcd}\left(d_{P}, q-1\right)}{q-1}
$$

Proof. By the orbit-stabilizer theorem, under the scaling action of weighted projective space, orb $(P)=$ $\frac{q-1}{\operatorname{gcd}\left(d_{P}, q-1\right)}$. This then follows from the fact that:

$$
|V|=\sum_{P \in X /\{0\}} \frac{1}{\operatorname{orb}(P)}
$$

We'll now introduce one more piece of notation. Suppose $t=\left(t_{0}, \ldots, t_{r}\right) \in\{0,1\}^{r+1}$. Say

$$
C_{t}:=\left\{P \in X: P_{i}=0 \Longleftrightarrow t_{i}=0\right\}
$$

and

$$
S_{t}:=\left\{N_{i}: t_{i}=1\right\}
$$

and as before $d_{t}=\operatorname{gcd}\left(S_{t}\right)$. Note that the C_{t} s form a partition of X. We also define an ordering on $\{0,1\}^{r+1}$. Suppose $u=\left(u_{0}, \ldots, u_{r}\right), t=\left(t_{0}, \ldots, t_{r}\right) \in\{0,1\}^{r+1}$. We say that $t \prec u$ if for all $i, u_{i}=0 \Longrightarrow t_{i}=0$. Let

$$
X_{u}=\bigcup_{t \prec u} C_{t}
$$

(Note that there is a bijection between X_{u} and the zero set of the equation: $\sum_{j} a_{i_{j}} x^{n_{i}}$ where i_{j} ranges only over the values of i such that $u_{i}=1$. We make this note because using Weil's paper we can count X_{u} more directly than $\left.C_{u}\right)$. Lastly, for convenience, let $T=\{0,1\}^{r+1} /\{(0,0, \ldots, 0)\}$

Theorem 2.2.

$$
\left|C_{u}\right|=\sum_{t \prec u}(-1)^{\text {sum }(u)-\operatorname{sum}(t)}\left|X_{u}\right|
$$

Proof. As the C_{t} are disjoin we have:

$$
\left|X_{u}\right|=\sum_{t \prec u}\left|C_{t}\right|
$$

Let $p_{0}, p_{1}, \ldots, p_{r}$ be distinct primes and for $t \in\{0,1\}^{r+1}$ let:

$$
P(t)=\prod_{i=0}^{r} p_{i}^{t_{i}}
$$

Let Q be the inverse of P. Note then that $P(t) \mid P(u)$ if and only if $t \prec u$. Thus our above equation becomes:

$$
\left|X_{u}\right|=\sum_{d \mid P(u)}\left|C_{Q(d)}\right|
$$

By the Mobius Inversion formula:

$$
\left|C_{u}\right|=\sum_{d \mid P(u)}\left|X_{Q(u)}\right| \mu\left(\frac{P(u)}{d}\right)
$$

Let $t=Q(u)$. As $P(u), d$ are squarefree, $\mu\left(\frac{P(u)}{d}\right)=\mu(P(u)) / \mu(d)$. Note that $\mu(P(u))=(-1)^{\text {sum }(u)}$. Thus, by the equivalence between $P(t) \mid P(u)$ and $t \prec u$, this summation is equivalent to

$$
\left|C_{u}\right|=\sum_{t \prec u}(-1)^{\text {sum }(u)-\operatorname{sum}(t)}\left|X_{u}\right|
$$

as desired.

Theorem 2.3.

$$
|V|=\sum_{t \in T}\left|C_{t}\right| \frac{\operatorname{gcd}\left(d_{t}, q-1\right)}{q-1}
$$

Proof. Note that for all $P \in C_{t}, d_{P}=d_{t}$. As the C_{t} form a partition of X, this formula is just a restatement of Corollary 2.1.1

2.2 Supersingular Projective Varieties

Lemma 2.4. For a given prime power q and integer N. Suppose N^{\prime} is the largest divisor of N relatively prime to q. Define:

$$
g(k)=\operatorname{gcd}\left(N, q^{k}-1\right)
$$

Furthermore define

$$
f_{r}(k)= \begin{cases}1 & r \mid k \\ 0 & \text { else }\end{cases}
$$

Then

$$
g(k)=\sum_{i=1}^{M} a_{i} f_{i}(k)
$$

where $M=\operatorname{ord}_{N^{\prime}}(q)$ and

$$
a_{i}=\sum_{d \mid i} g(d) \mu(i / d)
$$

for $i \mid M$ and $a_{i}=0$ otherwise with μ the moebius function.
Proof. Set a_{i} to be as claimed in the lemma statement. Note that

$$
g(k)=\operatorname{gcd}\left(N, q^{k}-1\right)=\operatorname{gcd}\left(N^{\prime}, q^{k}-1\right)
$$

By the Moebius inversion formula for $k \mid M$ we have:

$$
g(k)=\sum_{i \mid k} a_{i}
$$

As $f_{i}(k)=1$ if $i \mid k$ and 0 otherwise this is equivalent to:

$$
g(k)=\sum_{i=1}^{M} a_{i} f_{i}(k)
$$

We now claim $g(k)=g(\operatorname{gcd}(k, M))$. Clearly if $A \mid q^{\operatorname{gcd}(k, M)}-1$, then $A \mid q^{k}-1$. Thus $g(\operatorname{gcd}(k, M)) \mid g(k)$. Now suppose $A \mid q^{k}-1$ for $A \mid N^{\prime}$. As $A\left|N^{\prime}, A\right| q^{M}-1$. Thus for all $x, y A \mid q^{k x+M y}-1$. By Bezout's identity, $A \mid q^{\operatorname{gcd}(k, M)}-1$. Thus $g(k) \mid g(\operatorname{gcd}(k, M))$ and so $g(k)=g(\operatorname{gcd}(k, M))$. Now let k be any integer. Note that a_{i} and $f_{i}(k)$ are both nonzero only if i divides M and k and hence $\operatorname{gcd}(i, k)$. Thus we have:

$$
\sum_{i=1}^{M} a_{i} f_{i}(k)=\sum_{i \mid \operatorname{gcd}(k, M)} a_{i}
$$

However, as $\operatorname{gcd}(k, M)$ divides M we have already shown the latter expression to be $g(\operatorname{gcd}(k, M))$. As this equals $g(k)$, we have for all k :

$$
g(k)=\sum_{i=1}^{M} a_{i} f_{i}(k)
$$

as desired

Lemma 2.5. For a given prime power q and integer N, define $g(k)$ and a_{i} and M as in the preceding lemma. Then for all w, we have $w \mid a_{w}$.

Proof. If w is not a divisor of M then $a_{w}=0$ and so the statement follows immediately. As such, from now on we will assume w is a divisor of M so that we may use the inversion formula for a_{w}.
We'll begin by showing this is true for all N, q in the case where $w=p^{i}$ for some prime p. We have:

$$
a_{w}=\sum_{d \mid w} g(d) \mu(w / d)=g\left(p^{i}\right)-g\left(p^{i-1}\right)
$$

If $g\left(p^{i}\right)=g\left(p^{i-1}\right)$ then we have $a_{w}=0$ and so $w \mid a_{w}$. Suppose $g\left(p^{i}\right) \neq g\left(p^{i-1}\right)$. As $q^{p^{i-1}}-1 \mid q^{p^{i}}-1$, we have $g\left(p^{i-1}\right) \mid g\left(p^{i}\right)$. Now let B be such that $g\left(p^{i}\right)=B g\left(p^{i-1}\right)$. Note that

$$
\operatorname{gcd}\left(\frac{q^{p^{i}}-1}{q^{p^{i-1}}-1}, q^{p^{p^{i-1}}}-1\right)
$$

can only be a power of p. If $p \mid B$, then $p \mid q^{p^{i}}-1$ which occurs if and only if $p \mid q-1$. If $p \mid q-1$, then by lifting the exponent lemma $p^{i} \mid q^{p^{i-1}}-1$. So either p^{i} divides both $g\left(p^{i-1}\right)$ and $g\left(p^{i}\right)$, in which case we're done or $p \nmid B$. As $p \nmid B$ and

$$
\operatorname{gcd}\left(\frac{q^{p^{i}}-1}{q^{p^{i-1}}-1}, q^{p^{i-1}}-1\right)
$$

can only be a power of p, all prime factors of B cannot be factors of $q^{p^{i-1}}-1$. Thus for all primes $t \mid B$ we have $q^{p^{i-1}} \not \equiv 1(\bmod t)$ but $q^{p^{i}} \equiv 1(\bmod t)$ which implies $p^{i}\left|\operatorname{ord}_{t}(q)\right| t-1$. As for all primes $t \mid B$ we have $t \equiv 1(\bmod p)^{i}$, we have $B \equiv 1(\bmod p)^{i}$. Now

$$
g\left(p^{i}\right)-g\left(p^{i-1}\right)=(B-1) g\left(p^{i-1}\right)
$$

and thus $p^{i} \mid g\left(p^{i}\right)-g\left(p^{i-1}\right)$ as desired.
We'll now show that if m, n are relatively prime positive integers such that regardless of the choice of N, q we have $n \mid a_{n}$ and $m \mid a_{m}$, then $m n \mid a_{m n}$. For notational purposes let $g_{N, q}(k)$ be $g(k)$ for given N, q. We have

$$
\begin{aligned}
a_{m n} & =\sum_{d \mid m n} g(d) \mu(m n / d) \\
& =\sum_{x \mid m} \mu(m / x) \sum_{y \mid n} g(x y) \mu(n / y) \\
& =\sum_{x \mid m} \mu(m / x) \sum_{y \mid n} \operatorname{gcd}\left(N,\left(q^{x}\right)^{y}-1\right) \mu(n / y) \\
& =\sum_{x \mid m} \mu(m / x) \sum_{y \mid n} g_{N, q^{x}}(y) \mu(n / y)
\end{aligned}
$$

By our assumption that regardless of the choice of N, q we have $n \mid a_{n}$ and $m \mid a_{m}$ we have $n \mid \sum_{y \mid n} g_{N, q^{x}}(y) \mu(n / y)$ (as the latter is the formula for a_{n} for N, q^{x} given). Thus n divides the total expression and hence $a_{m n}$. By symmetry, $m \mid a_{m n}$.

Now suppose $w=\prod_{i} p_{i}^{e_{i}}$. By the first part of our proof $p_{i}^{e_{i}} \mid a_{p_{i} e_{i}}$. By the second part of our proof all of these divisibility statements together imply

$$
w=\prod_{i} p_{i}^{e_{i}} \mid a_{\prod_{i} p_{i}^{e_{i}}}=a_{w}
$$

as desired.

Definition 2.6. Let $\frac{p(T)}{s(T)}$ be a rational function. Define $\frac{p(T)}{s(T)}$ to be supersingular if every root of both p, s is of the form $r \alpha$ where $r \in \mathbb{R}_{\geq 0}$ and α is a root of unity.
Theorem 2.7. For given N, q let $g(k)=\operatorname{gcd}\left(N, q^{k}-1\right)$. Suppose

$$
\exp \left(\sum_{k \geq 1} h(k) \frac{T^{k}}{k}\right)
$$

defines a rational function $\frac{p(T)}{s(T)}$. Then,

$$
B(T):=\exp \left(\sum_{k \geq 1} h(k) g(k) \frac{T^{k}}{k}\right)
$$

also defines a rational function equal to

$$
\prod_{i=1}^{M}\left(\frac{p_{i}\left(T^{i}\right)}{s_{i}\left(T^{i}\right)}\right)^{b_{i}}
$$

for some integers b_{i}, M and with $p_{k}(T)=\prod_{j=1}^{k} p\left(T e^{\frac{2 \pi i j}{k}}\right)$ and s_{k} defined similarly. Furthermore, if $\frac{p(T)}{s(T)}$ is supersingular, then so is $B(T)$.
Proof. By Lemmas 2.4, for some M, we can write

$$
g(k)=\sum_{i=1}^{M} a_{i} f_{i}(k)
$$

Plugging this into our formula for $B(T)$ gives:

$$
\begin{aligned}
B(T) & =\exp \left(\sum_{k \geq 1} h(k) \sum_{i=1}^{M} a_{i} f_{i}(k) \frac{T^{k}}{k}\right) \\
& =\exp \left(\sum_{i=1}^{M} a_{i} \sum_{k \geq 1} h(k) f_{i}(k) \frac{T^{k}}{k}\right) \\
& =\exp \left(\sum_{i=1}^{M} a_{i} \sum_{k \geq 1} h(i k) \frac{T^{i k}}{i k}\right)^{\frac{a_{i}}{i}} \\
& =\prod_{i=1}^{M} \exp \left(\sum_{k \geq 1} h(i k) \frac{T^{i k}}{k}\right)^{3}
\end{aligned}
$$

Let

$$
A(T)=\sum_{k \geq 1} h(k) \frac{T^{k}}{k}
$$

so that $\frac{p(T)}{s(T)}=\log (A(T))$. Note note that if ζ_{i} is an i-th root of unity:

$$
\begin{aligned}
\sum_{k \geq 1} h(i k) \frac{T^{i k}}{i k} & =\frac{\sum_{j=1}^{i} A\left(T \zeta_{i}^{j}\right)}{i} \\
\exp \left(\sum_{k \geq 1} h(i k) \frac{T^{i k}}{k}\right) & =\prod_{j=1}^{i} \exp \left(A\left(T \zeta_{i}^{j}\right)\right) \\
& =\frac{p_{i}(T)}{s_{i}(T)}
\end{aligned}
$$

so our above expression becomes:

$$
B(T)=\prod_{i=1}^{M}\left(\frac{p_{i}(T)}{s_{i}(T)}\right)^{b_{i}}
$$

with $b_{i}=\frac{a_{i}}{i} \in \mathbb{Z}$ by Lemma 2.5. Now note that if p, s are supersingular, so are $p_{i}(T)$ and $s_{i}(T)$ and thus $B(T)$.

Corollary 2.7.1. Let V be the weighted projective space over \mathbb{F}_{q} defined to be the zero set of

$$
x^{r_{1}}+x^{r_{2}}=0
$$

Then V is supersingular over $\mathbb{F}_{q^{i}}$ for some i.
Proof. Let X be the same curve just over affine space instead of projective space. Using our notation from before, note that $\left|C_{[0,1]}\right|=\left|C_{[1,0]}\right|=0$ and $\left|C_{[0,0]}\right|=1$ and thus $\left|C_{[1,1]}\right|=|X|-1$. By our definitions $d_{[1,1]}=1$. Thus:

$$
|V|=\frac{|X|-1}{q-1}
$$

Let $R=\operatorname{gcd}\left(r_{1}, r_{2}\right)$. By Lemma 1.1, $|X|=\left|X^{\prime}\right|$ where X^{\prime} is the set of solutions to

$$
x_{1}^{R}+x_{2}^{R}=0
$$

over \mathbb{F}_{q}. There is one solution where one of the components is 0 . If $x_{1}, x_{2} \neq 0$, this equation is equivalent to:

$$
\left(x_{1} x_{2}^{-1}\right)^{R}=-1
$$

If $y^{R}=-1$ has no solutions in \mathbb{F}_{q}, the number of solutions is 0 . If it does have a solution, then it has precisely $\operatorname{gcd}(R, q-1)$ solutions. In which case there are $(q-1) \operatorname{gcd}(R, q-1)$ solutions as there are R choices for which root $x_{1} x_{2}^{-1}, q-1$ choices for x_{1} and then 1 choice for x_{2}. In net, $|V|=\operatorname{gcd}(R, q-1)$ if $y^{R}=-1$ has a solution as 0 otherwise. $y^{R}=-1$ will have a solution if and only if $2 \operatorname{gcd}(R, q-1) \mid q-1$.

Now consider when $y^{R}=-1$ has a solution over various $\mathbb{F}_{q^{k}}$. As this will depend on what the highest power of 2 divising $q^{k}-1$ is (we need $v_{2}\left(q^{k}-1\right) \geq v_{2}(R)+1$), there will exist an i such that $y^{R}=-1$ has a solution if and only if $i \mid k$. Thus, over $\mathbb{F}_{q^{i}}$,

$$
\zeta_{V}=\sum_{k \geq 1} \operatorname{gcd}\left(R, q^{i k}-1\right) \frac{T^{k}}{k}
$$

which is supersingular by theorem 2.7.

3 Some Conjectures and Basic Theorems

Theorem 3.1. Let X be a variety. If X is supersingular over \mathbb{F}_{q} then it is supersingular over $\mathbb{F}_{q^{k}}$. Furthermore, if X is nonsingular (weighted) projective and defined by the reduction modulo p of a nonsingular variety over a number field, then if it is supersingular over $\mathbb{F}_{q^{k}}$ it is also supersingular over \mathbb{F}_{q}.

Proof. Let ζ_{X} be the zeta function of X over \mathbb{F}_{q} :

$$
\zeta_{X}=\exp \left(\sum_{i \geq 0} a_{i} \frac{T^{i}}{i}\right)
$$

Then the zeta function $\zeta_{X_{k}}$ for X over $\mathbb{F}_{q^{k}}$ is:

$$
\zeta_{X_{k}}=\exp \left(\sum_{i \geq 0}^{\infty} a_{i k} \frac{T^{i}}{i}\right)
$$

Let

$$
A(T)=\sum_{i \geq 0} a_{i} \frac{T^{i}}{i}
$$

Let ζ be a k-th root of unity. Then

$$
\begin{aligned}
\frac{\sum_{j=1}^{k} A\left(T \zeta^{j}\right)}{k} & =\sum_{i \geq 0} a_{i k} \frac{T^{i k}}{i k} \\
\sum_{j=1}^{k} A\left(T^{1 / k} \zeta^{j}\right) & =\sum_{i \geq 0} a_{i k} \frac{T^{i}}{i}
\end{aligned}
$$

And thus:

$$
\zeta_{X_{k}}=\prod_{j=1}^{k} \zeta_{X}\left(T^{1 / k} \zeta^{j}\right)
$$

Now suppose

$$
\zeta_{X}=\frac{P(T)}{S(T)}=\frac{\prod_{i=1}^{m}\left(T-r_{i}\right)}{\prod_{i=1}^{m}\left(T-s_{i}\right)}
$$

Then

$$
\zeta_{X_{k}}= \pm \frac{\prod_{i=1}^{m}\left(T-r_{i}^{k}\right)}{\prod_{i=1}^{m}\left(T-s_{i}^{k}\right)}
$$

which implies that $\zeta_{X_{k}}$ is supersingular if ζ_{X} is.
We'll now do the second part. WLOG assume $\frac{P}{S}$ is in simplest form. Note that the only way $\zeta_{X_{k}}$ is supersingular but ζ_{X} is not is if the roots that do not have complex unit part a root of unity cancel in $\zeta_{X_{k}}$. However, by the fourth part of the weil conjectures, the numerator and denominator of the rational functions of ζ_{X} and $\zeta_{X^{k}}$ have the same degree. Thus there is no cancellation, and so ζ_{X} is supersingular.

Theorem 3.2. Given

$$
x_{0}^{n_{0}}+\cdots+x_{3}^{n_{3}}=0
$$

over field F_{p}, there exists d such that the variety is unirational if $q \equiv-1 \bmod d$, where $d=l c m\left(n_{0}, \ldots, n_{3}\right)$.
Proof. Given

$$
x_{0}^{n_{0}}+\cdots+x_{3}^{n_{3}}=0
$$

let $l=\operatorname{lcm}\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$ Let $x_{i}^{\prime}=x_{i}^{l / n_{i}}$. Then we get a homogeneous equation of degree l, which is unirational over \mathbb{F}_{p} if there exists a v such that $p^{v} \equiv-1 \bmod l$ by Shioda's paper.

Theorem 3.3. Let X be the variety defined by

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}} .
$$

If all the exponents are coprime, then X is isomorphic to the hyperplane H_{r-1} in \mathbb{P}^{r}, where r is the dimension of image of Veronese embedding.
Proof. Notice that X is in the weighted projective space $\mathbb{P}\left(w_{0}, \ldots, w_{r}\right)$. If $d=\operatorname{lcm}\left(n_{0}, \ldots, n_{r}\right)$, then $w_{i}=$ d / n_{i}, and we see that our equation has weighted homogeneous degree d. Then the image of our variety by Vernose embedding will be in \mathbb{P}^{R}, and the coordinate ring of the image is generated by $y_{i}=x_{i}^{n_{i}}$, and these elements only.
The reason is that a monomial $\prod x_{i}^{a_{i}}$ has weighted degree d is and only if $\sum a_{i} w_{i}=d$, which is equivalent to

$$
\sum \frac{a_{i}}{n_{i}}=1
$$

because we know $w_{i}=d / n_{i}$. And again, we can write this sum as

$$
\frac{a_{0}}{n_{0}}+\frac{A}{N}=\frac{a_{0} N+A n_{0}}{n_{0} N}=1, a_{i} \in \mathbb{Z}^{+}
$$

Since n_{0} divides $a_{0} N+A n_{0}$, we will have $n_{0} \mid a_{0} N$. But we assume that all the exponents are coprime, so $\operatorname{gcd}\left(n_{0}, N\right)=1$, and $n_{0} \mid a_{0}$, so either $a_{0}=1$ or $a_{0}=n_{0}$. We know that a_{0} cannot be any larger because $\sum \frac{a_{i}}{n_{i}}=1$. Therefore, we know that the only monomial that will appear in the image of Vernose embedding are of the form $y_{i}=x_{i}^{n_{i}}$, and there will be no other cross terms. Then we also know that the only relation that these new coordinate satisfies is the diagonal equation that we have, i. e., $y_{0}+\cdots+y_{r}=0$. Since a variety is isomorphic to the image of the Vernose embedding, and the image of the Vernose embedding give us a hyperplane in \mathbb{P}^{r}, we know that X is isomorphic to a hyperplane in \mathbb{P}^{r}.

Theorem 3.4. A variety X defined by

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}} .
$$

in weighted projective space is singular in \mathbb{F}_{q} if and only if (i) q| n_{i} for some i, or (ii) in weighted projective space $\mathbb{P}\left(w_{0}, \ldots, w_{r}\right)$, there exists a prime number p such that set $x_{j}=0$ when p does not divide n_{j}, we get a new equation that has solution over \mathbb{F}_{q}.

Proof. First, if $q \mid n_{i}$ for some i, then the Jacobian ring for X will be

$$
\left(n_{0} x_{0}^{n_{0}-1}, \ldots, 0, \ldots, n_{r} x_{r}^{n_{r}-1}\right)
$$

And we see that this ideal can be zero for some nonzero point. Thus (i) is true.
Second, we claim that the only singular points of the weighted projective space $\mathbb{P}\left(w_{0}, \ldots, w_{r}\right)$ are of the form

$$
\operatorname{Sing}_{p} \mathbb{P}\left(w_{0}, \ldots, w_{r}\right)=\left\{x \in \mathbb{P}\left(w_{0}, \ldots, w_{r}\right): x_{i} \neq 0 \text { only if } p \mid w_{i}\right\}
$$

for some prime p.
We contend that

$$
\operatorname{Sing} \mathbb{P}\left(w_{0}, \ldots, w_{r}\right)=\bigcup \operatorname{Sing}_{p} \mathbb{P}\left(w_{0}, \ldots, w_{r}\right)
$$

Corollary 3.4.1. If X is singular over \mathbb{F}_{q}, then it is singular over \mathbb{F}_{q}^{k}.
Theorem 3.5. Let X be a variety defined by,

$$
a_{0} x^{n_{0}}+\cdots+a_{r} x^{n_{r}}=0
$$

over \mathbb{F}_{q} where $q=p^{f}$ and let $\tilde{n}_{i}=\frac{n_{i}}{p^{v_{p}\left(n_{i}\right)}}$ i.e. n_{i} with all powers of p removed. Define the "base" variety \bar{X} by the equation,

$$
a_{0} x^{\tilde{n}_{0}}+\cdots+a_{r} x^{\tilde{n}_{r}}=0
$$

over \mathbb{F}_{q}. Then \bar{X} is smooth as an affine variety away from zero. Furthermore, There exits a bijective morphism $X \rightarrow \bar{X}$ so $\#(X)=\#(\bar{X})$ over each \mathbb{F}_{q} and thus $\zeta_{X}=\zeta_{\bar{X}}$.

Proof. Let $t_{i}=v_{p}\left(n_{i}\right)$. Let $\operatorname{Frob}_{p}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ denote the Frobenius automorphism $x \mapsto x^{p}$. Now we define the Frobenius morphism $X \rightarrow \bar{X}$ via $\left(x_{0}, \cdots, x_{r}\right) \mapsto\left(\operatorname{Frob}_{p}^{t_{0}}\left(x_{0}\right), \cdots, \operatorname{Frob}_{p}^{t_{r}}\left(x_{r}\right)\right)=\left(x_{0}^{p^{t_{0}}}, \cdots, x_{r}^{p^{t_{r}}}\right)$. This map is well defined because if,

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

then we have,

$$
a_{0}\left(x_{0}^{p^{t_{0}}}\right)^{\tilde{n}_{0}}+\cdots+a_{r}\left(x_{r}^{p^{t_{r}}}\right)^{\tilde{n}_{r}}=0
$$

Clearly this map is a morphism and it is bijective because I can exhibit an inverse map, $\left(x_{0}, \cdots, x_{r}\right) \mapsto$ $\left(\operatorname{Frob}_{p}^{-t_{0}}\left(x_{0}\right), \cdots, \operatorname{Frob}_{p}^{-t_{r}}\left(x_{r}\right)\right)$. Therefore, $\#(X)=\#(\bar{X})$ over any \mathbb{F}_{q}. This implies that $\zeta_{X}=\zeta_{\bar{X}}$. Furthermore, as an affine variety, \bar{X} has Jacobian,

$$
\left(a_{0} \tilde{n}_{0} x_{0}^{\tilde{n}_{0}-1}, \cdots, a_{r} \tilde{n}_{r} x_{r}^{\tilde{n}_{r}-1}\right)
$$

Since $p \nmid \tilde{n}_{i}$ for the Jacobian to have rank zero we must have $a_{i} \tilde{n}_{i} x_{i}^{\tilde{n}_{i}-1}=0 \Longrightarrow x_{i}=0$ for each i. Therefore, \bar{X} is smooth away from zero.

4 Additional Facts

Fact 4.1. A variety is rational over affine space if and only if it is rational over weighted projective space.
Fact 4.2. $\mathbb{P}(w, x, y, z) \cong \mathbb{P}(w, x d, y d, z d)$
Corollary 4.2.1. The two varieties described in Theorem 1.1 are isomorphic over weighted projective space
Fact 4.3. Let X be the variety defined by the curve:

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

Let $L=\operatorname{lcm}\left(n_{0}, \ldots, n_{r}\right)$ and let $w_{i}=L / n_{i}$. If

$$
\sum_{i} w_{i}-L>0
$$

then X is rational.

5 Zeta Functions

Definition 5.1. For a r-tuple of exponents n,

$$
A_{n, q}=\left\{\left(\alpha_{0}, \ldots, \alpha_{r}\right): 0<\alpha_{i}<1 \text { and } d_{i} \alpha_{i} \in \mathbb{Z} \text { and } \sum \alpha_{i} \in \mathbb{Z} \text { where } d_{i}=\operatorname{gcd}\left(n_{i}, q-1\right)\right\}
$$

Theorem 5.2. The variety X defined by,

$$
x_{0}^{n_{0}}+\cdots+x_{r}^{n_{r}}=0
$$

and the variety X_{a} defined by,

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

have equal zeta functions up to multiplication of the roots by $z^{\text {th }}$-roots of unity where

$$
z=\left[E: \mathbb{F}_{q}\right]
$$

and E is the splitting field of the polynomial,

$$
\prod_{i=0}^{r}\left(x_{i}^{n}-a_{i}\right)
$$

over \mathbb{F}_{q}.
Proof. Consider the variety X_{a} defined over E. Each a_{i} has all $n_{i}^{\text {th }}$ roots so we can write $a_{i}=b_{i}^{n_{i}}$ for each i. Therefore, X_{a} is defined by the polynomial equation over E,

$$
b_{0}^{n_{0}} x_{0}^{n}+\cdots+b_{r}^{n_{r}} x_{r}^{n_{r}}=\left(b_{0} x_{0}\right)^{n_{0}}+\cdots+\left(b_{r} x_{r}\right)^{n_{r}}=0
$$

Therefore, over E the varieties X_{a} and X are isomorphic via the linear E-map $\left(x_{0}, \cdots, x_{r}\right) \mapsto\left(b_{0} x_{0}, \cdots, b_{r} x_{r}\right)$ so $\zeta_{X_{E}}=\zeta_{X_{a, E}}$. However, the zeta function over E and over \mathbb{F}_{q} are equal up to replacing each root and pole of ζ by a $z^{\text {th }}$ root. Thus ζ_{X} and $\zeta_{X_{a}}$ are equal up to choices of $z^{\text {th }}$ root and thus up to multiplications by $z^{\text {th }}$ roots of unity.

Theorem 5.3. For the weighted projective variety (with points counted via the stack quotient) defined by

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

over \mathbb{F}_{q} such that $q \equiv 1 \bmod \left(\operatorname{lcm}\left(n_{i}\right)\right)$, the zeta function of X equals,

$$
\zeta_{X}(t)=\prod_{i=0}^{r-1} \frac{1}{1-q^{i} t} \cdot\left[\prod_{\alpha}\left(1+(-1)^{r} B(\alpha) j_{q}(\alpha) t\right)\right]^{(-1)^{r}}
$$

where $B(\alpha)=\chi_{\alpha_{0}}\left(a_{0}^{-1}\right) \ldots \chi_{\alpha_{r}}\left(a_{r}^{-1}\right)$ is a root of unity determined by α and the coefficients.

Proof. Notice that $A_{n, \alpha}$, the set of all possible $\left(\alpha_{i}\right)$, is the same for $\mathbb{F}_{q^{k}}$ for any positive integer k. The reason is that

$$
q \equiv 1 \quad \bmod \left(\operatorname{lcm}\left(n_{i}\right)\right) \Longleftrightarrow q \equiv 1 \quad \bmod n_{i} .
$$

Then $d_{i}=\operatorname{gcd}\left(n_{i}, q-1\right)=n_{i}$, and we know $d_{i} \leq n_{i}$, so d_{i} will not increase as the size of field increase. Thus the set $A_{n, p}$ is completely determined by the situation in \mathbb{F}_{q}. And we shall determine $A_{n, p}$ explicitly later. By Weil's paper, the formula for the number of solution over F_{q} is

$$
N_{1}=q^{r}+(q-1) \sum_{\alpha \in A_{n, p}} B(\alpha) j_{q}(\alpha)
$$

where,

$$
B(\alpha)=\chi_{\alpha_{0}}\left(a_{0}^{-1}\right) \ldots \chi_{\alpha_{r}}\left(a_{r}^{-1}\right) \quad \text { and } \quad j_{q}(\alpha)=\frac{1}{q} g\left(\chi_{\alpha_{0}}\right) \ldots g\left(\chi_{\alpha_{r}}\right)
$$

are algebraic numbers depends on r-tuple α. Because the set of α for each extension of \mathbb{F}_{q} are defined over \mathbb{F}_{q} we can use the reduction formula,

$$
g^{\prime}\left(\chi_{\alpha}^{\prime}\right)=-\left[-g\left(\chi_{\alpha}\right)\right]^{k}
$$

where g^{\prime} is the gaussian sum in the extension $\mathbb{F}_{q^{k}}$. Furthermore, for $x \in \mathbb{F}_{q}$,

$$
\chi_{\alpha}^{\prime}(x)=\chi_{\alpha}(x)^{k}
$$

Therefore, the number of solution in $\mathbb{F}_{q^{k}}$ is,

$$
N_{k}=q^{r k}+\left(q^{k}-1\right) \sum_{\alpha \in A_{n, p}}(-1)^{(r+1)(k+1)} B(\alpha)^{k} j(\alpha)^{k}
$$

Using the stack quotient, we get the formula for the number of solution in weighted projective space:

$$
N_{k}^{\prime}=\frac{N_{k}-1}{q^{k}-1}=\sum_{i=0}^{r-1}\left(q^{i k}\right)+\sum_{\alpha \in A_{n, p}}(-1)^{(r+1)(k+1)} B(\alpha)^{k} j(\alpha)^{k}
$$

Thus, the zeta function becomes,

$$
\begin{aligned}
\zeta_{X}(t) & =\exp \left(\sum_{i=0}^{r-1} \sum_{k=1}^{\infty} \frac{q^{i k}}{k} t^{k}+\sum_{\alpha \in A_{n, p}}(-1)^{r+1} \sum_{k=1}^{\infty}(-1)^{k(r+1)} \frac{B(\alpha)^{k} j(\alpha)^{k}}{k} t^{k}\right) \\
& =\exp \left(-\sum_{i=0}^{r-1} \log \left[1-q^{i} t\right]-(-1)^{r+1} \sum_{\alpha \in A_{n, p}} \log \left[1-(-1)^{(r+1)} B(\alpha) j(\alpha) t\right]\right) \\
& =\prod_{i=0}^{r-1} \frac{1}{1-q^{i} t} \cdot\left[\prod_{\alpha}\left(1+(-1)^{r} B(\alpha) j(\alpha) t\right)\right]^{(-1)^{r}}
\end{aligned}
$$

Proposition 5.4. Up to multiplying the roots by roots of unity, the zeta function of the weighted projective variety (with points counted via the stack quotient) defined by

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

over any \mathbb{F}_{q} is equal to,

$$
\zeta_{X}(t)=\prod_{i=0}^{r-1} \frac{1}{1-q^{i} t} \cdot\left[\prod_{\alpha}\left(1+(-1)^{r} B(\alpha) j_{q}(\alpha) t\right)\right]^{(-1)^{r}}
$$

where $B(\alpha)=\chi_{\alpha_{0}}\left(a_{0}^{-1}\right) \ldots \chi_{\alpha_{r}}\left(a_{r}^{-1}\right)$ is a root of unity determined by α and the coefficients.

Proof. By Theorem 3.1 we can reduce the zeta function for X over \mathbb{F}_{q} to zeta function for X over $\mathbb{F}_{q^{v}}$, where $v=\operatorname{ord}_{n}(q)$ and $n=\operatorname{lcm}\left(n_{i}\right)$ such that $q^{v} \equiv 1 \bmod \left(\operatorname{lcm}\left(n_{i}\right)\right)$. We know that $\zeta_{X_{q}}$ is equal to $\zeta_{X_{q^{v}}}$ with each root β replaced by $\beta^{1 / v}$. Therefore, $\zeta_{X_{q}}$ is determined up to roots of unity by Theorem 5.3.

Corollary 5.4.1. The variety X is supersingular if and only if $j_{q}(\alpha)=\omega q^{\frac{r-1}{2}}$ where ω is a root of unity for each $\alpha \in A_{n, q^{v}}$.
Proof. By Theorem 5.3 the roots and poles of the zeta function have the form $(-1)^{r} B(\alpha) j_{q}(\alpha)$ or q^{i}. Since $B(\alpha)$ is a product of characters it is always a root of unity. Therefore, each root of ζ_{X} has argument a root of unity if and only if $j_{q}(\alpha)$ does for each α.

Corollary 5.4.2. Note that $\left|g\left(\chi_{\alpha}\right)\right|=q$ and thus,

$$
\left|j_{q}(\alpha)\right|=\frac{1}{q}\left|g\left(\chi_{\alpha_{0}}\right)\right| \cdots\left|g\left(\chi_{\alpha_{r}}\right)\right|=\frac{1}{q} q^{\frac{r+1}{2}}=q^{\frac{r-1}{2}}
$$

Since the characters are roots of unity,

$$
\left|(-1)^{(r+1)} B(\alpha) j(\alpha)\right|=q^{\frac{r-1}{2}}
$$

By the Riemann hypothesis, each of the α-derived roots are roots of P_{r-1} in Weil's factorization of the zeta function. If $r-1$ is even then a factor of $\left(1-q^{\frac{r-1}{2}} t\right)$ from the zeta function of \mathbb{P}^{r} will also appear in P_{r-1}. Therefore, we can write,

$$
\zeta_{X}=\zeta_{\mathbb{P}^{r}} \cdot \tilde{P}_{r-1}^{(-1)^{r}}
$$

where $\zeta_{\mathbb{P}^{r}}$ is the zeta function of projective r-space and,

$$
\tilde{P}_{r-1}(t)=\prod_{\alpha}\left(1+(-1)^{r} B(\alpha) j(\alpha) t\right)
$$

Therefore, we can write the Weil factorization of ζ_{X} as,

$$
P_{i}(t)= \begin{cases}1-q^{\frac{i}{2}} t & 0 \leq i \leq 2(r-1) \text { is even and } i \neq r-1 \\ \left(1-q^{\frac{r-1}{2}} t\right) \cdot \tilde{P}_{r-1}(t) & i=r-1 \text { is even } \\ \tilde{P}_{r-1}(t) & i=r-1 \text { is odd }\end{cases}
$$

Remark. The only interesting cohomology group is H^{r-1} which shows up in the dimension of the surface.
Theorem 5.5. Let X be the weighted projective variety (with points counted via the stack quotient) defined by

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

over any \mathbb{F}_{q}. Then the Betti numbers are determined,

$$
\operatorname{dim} H^{i}(X)= \begin{cases}1 & 0 \leq i \leq 2(r-1) \text { is even and } i \neq r-1 \\ \left|A_{n, q}\right|+1 & i=r-1 \text { is even } \\ \left|A_{n, q}\right| & i=r-1 \text { is odd }\end{cases}
$$

Proof. By Theorem 3.1, changing the base field only changes the zeta function by multiplying its roots by roots of unity. In particular, the magnitudes of the degrees of each P_{i} and thus the Betti numbers are not changed. Therefore, given X defined over \mathbb{F}_{q} take $v=\operatorname{ord}_{n}(q)$ and $n=\operatorname{lcm}\left(n_{i}\right)$ such that $q^{v} \equiv 1(\bmod n)$. Then we know that $\zeta_{X_{p^{v}}}$ factors with,

$$
P_{i}(t)= \begin{cases}1-q^{\frac{i}{2}} t & 0 \leq i \leq 2(r-1) \text { is even and } i \neq r-1 \\ \left(1-q^{\frac{r-1}{2}} t\right) \cdot \tilde{P}_{r-1}(t) & i=r-1 \text { is even } \\ \tilde{P}_{r-1}(t) & i=r-1 \text { is odd }\end{cases}
$$

Therefore, the Betti numbers of X which are equal to the Betti numbers of $X_{p^{v}}$ are equal to the degrees of these polynomials.

Remark. Notice that whether a variety is supersingular or not is now determined explicitly by one computation of Gaussian sum.

Proposition 5.6. If $\alpha_{1}+\alpha_{2}=1$, then $g\left(\chi_{\alpha_{1}}\right) g\left(\chi_{\alpha_{2}}\right)=\chi_{\alpha_{1}}(-1) p$.
Proof. Notice that if $\alpha_{1}+\alpha_{2}=1$, then $\chi_{\alpha_{1}}=\overline{\chi_{\alpha_{2}}}$. We know that

$$
\begin{aligned}
g(\chi) g(\bar{\chi}) & =\sum_{x \neq 0} \sum_{y \neq 0} \chi\left(x y^{-1}\right) \psi(x+y) \\
& =\sum_{x \neq 0} \chi(x) \sum_{y \neq 0} \psi[(x+1) y]
\end{aligned}
$$

The second sum has the value $p-1$ for $x=-1$, and -1 when $x \neq 0$. As sum over all $x \in k^{*}$ is 0 , we get $g\left(\chi_{\alpha_{1}}\right) g\left(\chi_{\alpha_{2}}\right)=\chi_{\alpha_{1}}(-1) p$.

In our example when $n=4$ and $\alpha_{1}=1 / 4, \chi_{1 / 4}(-1)=1$ if $p \equiv 1 \bmod 8$, and $\chi_{1 / 4}(-1)=-1$ otherwise.
Fact 5.7. Let $K=\mathbb{Q}\left(\zeta_{n}\right)$ be a cyclotomic field. Then \mathcal{O}_{K} is a PID if and only if $n=m$ or, when m is odd, $n=2 m$ where m is one of the following,

$$
1,3,4,5,7,8,9,11,12,13,15,16,17,19,20,21,24,25,27,28,32,33,35,36,40,44,45,48,60,84
$$

Lemma 5.8 (Coyne). Let $d=\operatorname{lcm}\left(n_{i}\right)$ and $w_{i}=d / n_{i}$ then,

$$
\#\left\{\left(x_{0}, \cdots, x_{r}\right): \sum_{i=0}^{r} w_{i} x_{i} \equiv 0 \quad \bmod (d) \text { and } 0 \leq x_{i}<n_{i}\right\}=\frac{1}{\operatorname{lcm}\left(n_{i}\right)} \prod_{i=0}^{r} n_{i}
$$

Proof. Consider the homomorphism,

$$
\Phi: \prod_{i=0}^{r}\left(\mathbb{Z} / n_{i} \mathbb{Z}\right) \rightarrow \mathbb{Z} / d \mathbb{Z}
$$

via $\left(x_{0}, \cdots, x_{r}\right) \mapsto w_{0} x_{0}+\cdots+w_{r} x_{r}$. Thus,

$$
\operatorname{ker} \Phi=\left\{\left(x_{0}, \cdots, x_{i}\right): \sum_{i=0}^{r} w_{i} x_{i} \equiv 0 \quad \bmod (d) \text { and } 0 \leq x_{i}<n_{i}\right\}
$$

Suppose that $p^{r} \| d$ then we know that $p^{r} \| n_{i}$ for some n_{i}. Thus, $p \nmid w_{i}$ so each prime dividing d cannot divide all w_{i}. However, $w_{i} \mid d$ so the list w_{0}, \cdots, w_{r} cannot share any common factors. Thus, the ideal $\left(w_{0}, \cdots, w_{r}\right)=\mathbb{Z}$ so the map Φ is surjective. Therefore, by the first isomorphism theorem,

$$
\#(\operatorname{ker} \Phi)=\#\left(\prod_{i=0}^{r} \mathbb{Z} / n_{i} \mathbb{Z}\right) / \#(\mathbb{Z} / d \mathbb{Z})=\frac{1}{d} \prod_{i=0}^{r} n_{i}
$$

Lemma 5.9. The number of alphas $A_{n, q}$ is given by the formula,

$$
\#\left(A_{n, q}\right)=\sum_{t \in T} \frac{(-1)^{r+1-\operatorname{sum}(t)}}{\operatorname{lcm}\left(d_{i} \mid t_{i}=1\right)} \prod_{i \in\left\{i: t_{i}=1\right\}} d_{i}
$$

where $d_{i}=\operatorname{gcd}\left(n_{i}, q-1\right)$.
Proof. For each $t \in T$, define the number,

$$
C_{t}=\#\left\{\left(x_{0}, \cdots, x_{r}\right): \sum_{i=0}^{r} w_{i} x_{i} \equiv 0 \quad \bmod \operatorname{lcm}\left(d_{i}\right) \text { and } 0 \leq x_{i}<d_{i} \text { and } x_{i}=0 \text { if } t_{i}=0\right\}
$$

By inclusion-exclusion,

$$
\#\left(A_{n, q}\right)=\#\left\{\left(x_{0}, \cdots, x_{r}\right): \sum_{i=0}^{r} w_{i} x_{i} \equiv 0 \quad \bmod \operatorname{lcm}\left(d_{i}\right) \text { and } 0<x_{i}<d_{i}\right\}=\sum_{t \in T}(-1)^{r+1-\operatorname{sum}(t)} C_{t}
$$

However, letting,

$$
g=\frac{\operatorname{lcm}\left(d_{i}\right)}{\operatorname{lcm}\left(d_{i} \mid t_{i}=1\right)}
$$

then we know that $g \mid w_{i}$ for $t_{i}=1$ since $w_{i}=\operatorname{lcm}\left(d_{i}\right) / d_{i}$ and thus,

$$
\tilde{w}_{i}^{t}=\frac{w_{i}}{g}=\frac{\operatorname{lcm}\left(d_{i} \mid t_{i}=1\right)}{d_{i}} \in \mathbb{Z}
$$

since d_{i} is such that $t_{i}=1$. Therefore, the conditions,

$$
\sum_{i=0}^{r} w_{i} x_{i} \equiv 0 \quad \bmod \operatorname{lcm}\left(d_{i}\right) \Longleftrightarrow \sum_{i=0}^{r} \tilde{w}_{i}^{t} x_{i} \equiv 0 \quad \bmod \operatorname{lcm}\left(d_{i} \mid t_{i}=1\right)
$$

are equivalent when $x_{i}=0$ for $t_{i}=0$. By Coyne's Lemma,

$$
C_{t}=\frac{1}{\operatorname{lcm}\left(d_{i} \mid t_{i}=1\right)} \prod_{i \in\left\{i: t_{i}=1\right\}} d_{i}
$$

and thus the lemma follows.

6 Gauss Sums

6.1 Previously Known Facts and Some Lemmas

Theorem 6.1. $g\left(\chi_{\alpha}\right)=\omega q^{\frac{1}{2}}$ where ω is a root of unity if and only if $\alpha=1, \frac{1}{2}$.
Proof. See Chowla.
Lemma 6.2. Let χ be a character on \mathbb{F}_{q} of order m. Then $g(\chi)^{m} \in \mathbb{Q}\left(\zeta_{m}\right)$.
Proof. Well-known fact. See Evans' generalization of Chowla's paper.
Lemma 6.3. Let χ be a character of order m on \mathbb{F}_{q} for $q=p^{r}$. Let $K=\mathbb{Q}\left(\zeta_{p r}\right)$ with $m \mid r$ and a an integer $1(\bmod m)$ with $(a, 2 p(q-1))=1$. Let $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ be the element such that

$$
\sigma\left(\zeta_{2 p(q-1)}\right)=\zeta_{2 p(q-1)}^{a}
$$

Then $\sigma(g(\chi))=\bar{\chi}(a) g(\chi)$.
Proof. Let ψ be the nontrivial additive character such that:

$$
g(\chi)=\sum_{a \in \mathbb{F}_{q}} \chi(a) \psi(a)
$$

Note that $\psi(x)^{p}=\psi(p x)=\psi(0)=1$. Thus $\psi(x)=\zeta_{p}^{t(x)}$ for $t: \mathbb{F}_{q} \rightarrow \mathbb{Z}$. We can select ζ_{p} to be the p-th root of unity so that $t(1)=1$. Note that as $\psi(x+y)=\psi(x) \psi(y), t(x+y)=t(x)+t(y)$. Thus as a is an integer $t(a)=a$ and $t(a x)=a t(x)$.

$$
\sigma(\psi(x))=\sigma\left(\zeta_{p}\right)^{t(x)}=\zeta_{p}^{a t(x)}=\zeta_{p}^{t(a x)}=\psi(a x)
$$

If w is a generator of \mathbb{F}_{q}^{\times}, as $a \equiv 1(\bmod m)$ and χ has order m, we have $\sigma(\chi(w))=\chi(w)^{a}=\chi(w)$. Thus as χ is nontrivial,

$$
\begin{aligned}
\sigma(g(\chi)) & =\sum_{x \in \mathbb{F}_{q}^{X}} \sigma(\chi(x)) \sigma(\psi(x)) \\
& =\sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(a x)
\end{aligned}
$$

Making the substitution $a x \mapsto x$ gives,

$$
\begin{aligned}
\sigma(g(\chi)) & =\sum_{x \in \mathbb{P}_{q}^{\times}} \chi\left(a^{-1} x\right) \psi(x) \\
& =\bar{\chi}(a) \sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(x) \\
& =\bar{\chi}(a) g(\chi)
\end{aligned}
$$

Theorem 6.4. [See Lang's Algebraic Number Theory] Let \mathfrak{p} be a prime lying over p in $\mathbb{Q}\left(\zeta_{m}\right)$ and let \mathfrak{P} be a prime lying over \mathfrak{p} in $\mathbb{Q}\left(\zeta_{m}, \zeta_{p}\right)$. Let f be the order of p modulo m and $q=p^{f}$. Let χ be a character of $\mathbb{F}=\mathbb{F}_{q}$ such that

$$
\chi(a) \equiv a^{-(q-1) / m} \quad(\bmod \mathfrak{p})
$$

Then for any integer $r \geq 1$ we have:

$$
\tau\left(\chi^{r}\right) \sim \mathfrak{P}^{\alpha(r)}
$$

where

$$
\alpha(r)=\frac{1}{f} \sum_{\mu} s\left(\frac{(q-1) \mu r}{m}\right) \sigma_{\mu}^{-1}
$$

where the summation runs over all $0<\mu<p-1$ relatively prime to $p-1$ and where $s(v)$ is the sum of the digits of the p-adic expansion of v modulo $q-1$. Furthermore, if μ, μ^{\prime} are such that $\sigma_{\mu}^{-1} \mathfrak{P}=\sigma_{\mu^{\prime}}^{-1} \mathfrak{P}$ then

$$
s\left(\frac{(q-1) \mu r}{m}\right)=s\left(\frac{(q-1) \mu^{\prime} r}{m}\right)
$$

Remark. If $f=1$, then $\sigma_{\mu}^{-1} \mathfrak{P}$ is distinct for all $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$. In general, by cyclotomic reciprocity, there are $\frac{\phi(m)}{f}$ distinct values of $\sigma_{\mu}^{-1} \mathfrak{P}$ as μ ranges over all the elements of $(\mathbb{Z} / m \mathbb{Z})^{\times}$

Lemma 6.5.

$$
s(v)=(p-1) \sum_{i=0}^{f-1}\left\{\frac{p^{i} v}{q-1}\right\}
$$

Theorem 6.6. (From Evans' Chowla Generalization) Let χ, ψ be two multiplicative characters modulo p of order >2. Then $g(\chi)^{j} g(\psi)^{k}$ has argument a root of unity if and only if $j=k$ and $\chi=\bar{\psi}$ or $j=2 k, \chi=\bar{\psi}^{2}$ and ψ has order 6 .

6.2 Jacobi Sums

Proposition 6.7. Let $J\left(\chi_{1}, \chi_{2}\right)=\sum_{x} \chi_{1}(x) \chi_{2}(1-x)$, where χ is a character of \mathbb{F}_{q}. If $\chi_{1} \chi_{2} \neq 1$, then

$$
J\left(\chi_{1}, \chi_{2}\right)=\frac{g\left(\chi_{1}\right) g\left(\chi_{2}\right)}{g\left(\chi_{1} \chi_{2}\right)}
$$

Proof.

$$
\begin{aligned}
g\left(\chi_{1}\right) g\left(\chi_{2}\right) & =\sum_{x} \sum_{y} \chi_{1}(x) \chi_{2}(y) \psi(x+y) \\
& =\sum_{x} \sum_{y} \chi_{1}(x) \chi_{2}(y-x) \psi(y) \\
& =\sum_{x} \sum_{a \neq 0} \chi_{1}(x) \chi_{2}(a-x) \psi(a)+\sum_{x} \chi_{1}(x) \chi_{2}(-x) \\
& =\left(\sum_{a} \chi_{1} \chi_{2}(a) \psi(a)\right) \cdot\left(\sum_{x} \chi_{1}(x) \chi_{2}(1-x)\right)
\end{aligned}
$$

Proposition 6.8. If $\left.\chi_{1} \cdots \chi_{4}\right|_{\mathbb{F}_{q}^{\times}}=\chi_{0}$ where χ_{0} is the trivial character then,

$$
g\left(\chi_{1}\right) \ldots g\left(\chi_{4}\right)=J\left(\chi_{1}, \chi_{2}\right) J\left(\chi_{3}, \chi_{1} \chi_{2}\right) \chi_{4}(-1) q
$$

6.3 Products of Gauss Sums

Theorem 6.9. Let $\chi_{1}, \ldots, \chi_{n}$ be nontrivial characters on \mathbb{F}_{q} for $q=p^{r}$ with p an odd prime. If n is even and $\left.\chi_{1} \cdots \chi_{n}\right|_{\mathbb{F}_{p}^{\times}}$is not the trivial character or n is odd and $\left.\chi_{1} \cdots \chi_{n}\right|_{\mathbb{F}_{p}^{\times}}$is not -1 or 1 everywhere, then

$$
\prod_{i=1}^{n} g\left(\chi_{i}\right)
$$

does not have argument equal to a root of unity.
Proof. (adapted from theorem 1 in Evans' Generalizations of Chowla paper)
Let L be the lcm of the orders of the χ_{i}. Let

$$
G=\prod_{i=1}^{n} g\left(\chi_{i}\right)
$$

By Lemma 6.2, $g\left(\chi_{i}\right)^{L} \in \mathbb{Q}\left(\zeta_{L}\right)$. Thus $G^{L} \in \mathbb{Q}\left(\zeta_{L}\right)$. Let ϵ be the number of order 1 such that $G=q^{n / 2} \epsilon$. Now suppose G does have argument equal to a root of unity. As $G^{L} \in \mathbb{Q}\left(\zeta_{L}\right), G^{L}$ must be a $2 L$-th root of unity. Thus $\epsilon=\zeta_{2 L^{2}}^{v}$ for some integer v.

Now let a be an integer such that $a \equiv 1(\bmod 2) L^{2}$ and $a \equiv g^{-1}(\bmod p)$ where g is a generator modulo p. Note that such an a exists as $L \mid q-1$ and hence must be relatively prime to p. Now consider the Galois $\operatorname{group} \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{2 p L^{2}}\right) / \mathbb{Q}\left(\zeta_{2 L^{2}}\right)\right)$ and the element σ contained in it such that:

$$
\sigma\left(\zeta_{2 p L^{2}}\right)=\zeta_{2 p L^{2}}^{a}
$$

This is a well-defined element as $\left(a, 2 p L^{2}\right)=1 a \equiv 1(\bmod 2) L^{2}$ so it fixes $\mathbb{Q}\left(\zeta_{2 L^{2}}\right)$. Note that as ϵ is a $2 L^{2}$-th root of unity $\sigma(\epsilon)=\epsilon$. Furthermore, $\sigma(\sqrt{ }(q))= \pm \sqrt{q}$. As

$$
\sigma(G)=\sigma\left(q^{n / 2}\right) \sigma(\epsilon)
$$

So $\sigma(G)=G$ if n is even and $\sigma(G)= \pm G$ if n is odd. However, we also have by lemma 6.3,

$$
\sigma(G)=\prod_{i=1}^{n} \sigma\left(g\left(\chi_{i}\right)\right)=\prod_{i=1}^{n} \chi_{i}\left(a^{-1}\right) g\left(\chi_{i}\right)=G \prod_{i=1}^{n} \chi_{i}\left(a^{-1}\right) G \prod_{i=1}^{n} \chi_{i} \mid \mathbb{F}_{p}(g)
$$

Hence if n is even,

$$
\prod_{i=1}^{n} \chi_{i} \mid \mathbb{F}_{p}(g)=1
$$

and if n is odd,

$$
\left.\prod_{i=1}^{n} \chi_{i}\right|_{\mathbb{F}_{p}}(g)= \pm 1
$$

Thus, as g is a generator, $\prod_{i=1}^{n} \chi_{i} \mid \mathbb{F}_{p}$ must be the trivial character if n is even and take value ± 1 everywhere if n is odd.

Proposition 6.10. If χ_{1}, χ_{2} are two different nontrivial character on \mathbb{F}_{q} of same order, and

$$
\mu=g^{j}\left(\chi_{1}\right) g^{k}\left(\chi_{2}\right) q^{(j+k) / 2} \in U
$$

where $q=p^{r}$, and $j \neq k, g(\chi)$ is gauss sum on \mathbb{F}_{q}, U denote the group of all root of unity, then in $\mathbb{Q}\left(\zeta_{p(q-1)}\right)$, we have $\left(q^{1 / 2}\right)$ divides $\left(g\left(\chi_{i}\right)\right)$, i.e.,

$$
\mathcal{O} g\left(\chi_{1}\right)=\mathcal{O}\left(q^{1 / 2}\right) \mathfrak{a}
$$

Proof. Notice that

$$
\mu=\frac{g^{j}\left(\chi_{1}\right) \chi_{2}^{k}(-1)}{q^{(j-k) / 2} g^{k}\left(\overline{\chi_{2}}\right)}
$$

And

$$
V\left(g\left(\chi_{1}\right)\right)=V\left(g\left(\chi_{2}\right)\right)=\min _{(a, q-1)=1} s\left(\frac{a(q-1)}{m}\right)
$$

But we also have $V\left(g^{j}\left(\chi_{1}\right)\right)=V\left(q^{(j-k) / 2} g^{k}\left(\overline{\chi_{2}}\right)\right)$, while $V\left(q^{1 / 2}\right)=(p-1) r / 2$. This give us the result.
Remark. When is $e_{i}=(p-1) r / 2$ for each i ? Let us just act by Galois group again.
Remark. When is the conjugate of a gauss sum a gauss sum? Why is the equation

$$
\sigma_{a}\left(G_{r}(\chi)\right)=\bar{\chi}(a) G_{r}(\chi) ?
$$

Lemma 6.11. If K / \mathbb{Q} is abelian then $|\sigma(z)|^{2}=\sigma\left(|z|^{2}\right)$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$. In particular, if $|z|^{2} \in \mathbb{Q}$ then $\sigma\left(|z|^{2}\right)=\left|z^{2}\right|$ and thus $|\sigma(z)|=|z|$.

Proof. Since K / \mathbb{Q} is Galois complex conjugation $\tau: K \rightarrow K$ is an automorphism fixing \mathbb{Q} so $\tau \in \operatorname{Gal}(K / \mathbb{Q})$. Furthermore, $|\sigma(z)|^{2}=\sigma(z) \tau(\sigma(z))=\sigma(z) \sigma(\tau(z))=\sigma(z \tau(z))=\sigma\left(|z|^{2}\right)$ since $\operatorname{Gal}(K / \mathbb{Q})$ is abelian.

Lemma 6.12. Let K be a number field and $z \in \mathcal{O}_{K}$ such that $|\sigma(z)|=1$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ then z is a root of unity.

Proposition 6.13. The element $q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)$ is an algebraic integer if and only if it is a root of unity.

Proof. We know that $\left|q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)\right|=1$ and since σ takes $g(\chi)$ to another Gaussian sum which must also have magnitude $q^{\frac{1}{2}}$ we know that,

$$
\left|\sigma\left(q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)\right)\right|=\left|\sigma\left(q^{-(r+1) / 2}\right)\right|\left|\sigma\left(g\left(\chi_{0}\right)\right)\right| \cdots\left|\sigma\left(g\left(\chi_{r}\right)\right)\right|=\left| \pm q^{-(r+1) / 2}\right| q^{(r+1) / 2}=1
$$

Thus, if $q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)$ is an algebraic integer then by Lemma 6.12 we know that $q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)$ is a root of unity. Conversely, if $q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)$ is a root of unity then clearly it is an algebraic integer.

Corollary 6.13.1. The element $q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)$ is a root of unity if and only if the principal fractional ideal generated by it in $K=\mathbb{Q}\left(\zeta_{m}, \zeta_{p}\right)$ is \mathcal{O}_{K} if and only if it is an algebraic integer.

Proof. If it is a root of unity, then the ideal generated will be \mathcal{O}_{K}. If it is not a root of unity, by the Proposition 6.13 it is not an algebraic integer. Thus the ideal cannot be \mathcal{O}_{K}.

Remark. By Stickelberger's theorem, we can determine exactly when $q^{-(r+1) / 2} g\left(\chi_{0}\right) \ldots g\left(\chi_{r}\right)$ is a unit.

Theorem 6.14. Let p be an odd prime (or $r+1$ is even) and $q=p^{f}$. The normalized product $\omega=$ $q^{-\frac{r+1}{2}} g\left(\chi^{e_{0}}\right) \cdots g\left(\chi^{e_{r}}\right)$ is a root of unity if and only if,

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) \mu e_{i}}{m}\right)=\frac{r+1}{2}(p-1) f
$$

for each $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$.
Proof. Consider the ideals generated by $g\left(\chi^{e_{0}}\right) \cdots g\left(\chi^{e_{r}}\right)$ and by $q^{\frac{r+1}{2}}$ respectivly. By Lang's formula, we know the Gaussian sum factors into prime ideals as,

$$
\left(g\left(\chi^{e_{0}}\right) \cdots g\left(\chi^{e_{r}}\right)\right)=\mathfrak{P}_{1}^{D_{1}} \cdots \mathfrak{P}_{w}^{D_{w}}
$$

where,

$$
D_{j}=\sum_{i=0}^{r} s\left(\frac{(q-1) \mu e_{i}}{m}\right)
$$

Lang's formula contains a factor of f^{-1}. However, $\sigma_{\mu}^{-1} \mathfrak{P}$ ranges over each prime above p a total of f times because the decomposition group has order f. The sets of σ_{μ} mapping to a fixed prime are exactly the cosets of the decomposition groups of which there are $w=\phi(m) / f$. In the field $K=\mathbb{Q}\left(\zeta_{m}, \zeta_{p}\right)$ the ideal (p) factors as,

$$
(p)=\mathfrak{P}_{1}^{(p-1)} \cdots \mathfrak{P}_{w}^{(p-1)}
$$

Therefore, since $\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}\left(\zeta_{p}\right)$ for p an odd prime, the ideal $\left(q^{\frac{r+1}{2}}\right)=\left(p^{\frac{r+1}{2} f}\right)$ fractors into primes as,

$$
\left(q^{\frac{r+1}{2}}\right)=\left(p^{\frac{r+1}{2}}\right)^{f}=\mathfrak{P}_{1}^{\frac{r+1}{2}(p-1) f} \cdots \mathfrak{P}_{w^{\frac{r+1}{2}}(p-1) f}
$$

Therefore, the principal fractional ideal genreated by ω factors as,

$$
(\omega)=\left(q^{\frac{r+1}{2}}\right)^{-1}\left(g\left(\chi^{e_{0}}\right) \cdots g\left(\chi^{e_{r}}\right)\right)=\mathfrak{P}_{1}^{D_{1}-\frac{r+1}{2}(p-1) f} \cdots \mathfrak{P}_{w}^{D_{w}-\frac{r+1}{2}(p-1) f}
$$

Which implies that $\omega \in \mathcal{O}_{K}$ if and only if,

$$
D_{w}=\sum_{i=0}^{r} s\left(\frac{(q-1) \mu e_{i}}{m}\right) \geq \frac{r+1}{2}(p-1) f
$$

such that the fractional ideal it generates is an actual ideal of \mathcal{O}_{K}. However, by Proposition $6.13, \omega \in \mathcal{O}_{K}$ if and only if ω is a root of unity. In particular, if $\omega \in \mathcal{O}_{K}$ then ω is a unit. Therefore, ω is a root of unity if and only if,

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) \mu e_{i}}{m}\right) \geq \frac{r+1}{2}(p-1) f
$$

for each $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$if and only if

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) \mu e_{i}}{m}\right)=\frac{r+1}{2}(p-1) f
$$

for each $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$.
Theorem 6.15. Let X defined by,

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

be a variety over $\mathbb{F}_{p^{t}}$. Let $n=\operatorname{lcm}\left(n_{i}\right)$. And consider it's zeta function over \mathbb{F}_{q}, where $q=p^{f}$ such that $f=\operatorname{ord}_{n}(p)$. This means that $q \equiv 1 \bmod n$. Then X is supersingular over \mathbb{F}_{q} if and only if

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) \mu \ell_{i}}{n}\right)=\frac{r+1}{2}(p-1) f
$$

for each,

$$
\ell \in\left\{\left(\ell_{0}, \ldots, \ell_{r}\right): \ell_{i} \in \mathbb{Z} \text { and } n \mid \sum_{i=0}^{r} \ell_{r} \text { and } 0<\ell_{i}<n \text { and } n \mid \ell_{i} n_{i}\right\}
$$

and each $\mu \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Notice in Lang (p97) that if $\sigma_{\mu}\left(\mathfrak{P}_{j}\right)=\mathfrak{P}_{j}$, then $s\left(\frac{(q-1) \mu r_{i}}{n}\right)=s\left(\frac{(q-1) r_{i}}{n}\right)$.
Proof. When $q=p^{f}$, then X is supersingular over \mathbb{F}_{p} if and only if X is supersingular over \mathbb{F}_{q} if and only if X is supersingular over $\mathbb{F}_{p^{t}}$. Thus, we need only consider the supersingularity of X over \mathbb{F}_{q}. However, by Lang, the above condition gives that the product of each tuple of Gaussian sums generates the same ideal as $q^{\frac{r+1}{2}}$ and thus their ratio is a unit. By Proposition 6.13 , this implies that each product has argument root of unity. Therefore, by Corollary 5.4 .1, we know that X is supersingular over \mathbb{F}_{q}.

Theorem 6.16. Let χ be a multiplicative character of order $p-1$ modulo p. Let $\chi^{a}, \chi^{b}, \chi^{c}$ be three multiplicative distinct characters modulo p of order >2. Then $g\left(\chi^{a}\right) g\left(\chi^{b}\right) g\left(\chi^{c}\right)^{2}$ does not have argument a root of unity.

Proof. Assume $g\left(\chi^{a}\right) g\left(\chi^{b}\right) g\left(\chi^{c}\right)^{2}$ is a root of unity. To begin note that the unit part of $g\left(\chi^{a}\right) g\left(\chi^{b}\right) g\left(\chi^{c}\right)^{2}$ is:

$$
p^{-2} g\left(\chi^{a}\right) g\left(\chi^{b}\right) g\left(\chi^{c}\right)^{2}=\frac{g\left(\chi^{a}\right) g\left(\chi^{b}\right) \chi^{c}(-1)}{g\left(\chi^{-c}\right)^{2}}
$$

Thus the above must be a root of unity. Now consider the principal ideal generated by it in $\mathbb{Q}\left(\zeta_{p-1}, \zeta_{p}\right)$. By Theorem 6.4, for each μ relatively prime to $p-1$, the prime ideal $\sigma_{\mu}^{-1} \mathfrak{P}$ has index:

$$
s(\mu a)+s(\mu b)-2 s(-\mu c)=0
$$

WLOG assume $0<a, b<p-1$ and let $0<d<p-1$ be such that $d \equiv-c(\bmod p)-1$. As $s(\mu a)=$ $(p-1)\left\{\frac{\mu c}{p-1}\right\}$, the above is equivalent to:

$$
\left\{\frac{\mu a}{p-1}\right\}+\left\{\frac{\mu b}{p-1}\right\}=2\left\{\frac{\mu c}{p-1}\right\}
$$

for all μ relatively prime to $p-1$. Taking $\mu=1$ gives $2 d=a+b$. Now let c^{\prime}, t be such that $t=\operatorname{gcd}(d, p-1)$ and $d=c^{\prime} t$. As χ^{c} has order >2 we must have $t<\frac{p-1}{2}$. Now there exists $\nu<\frac{p-1}{t}$ such that $\nu d \equiv t(\bmod p-1)$ and ν is relatively prime to $\frac{p-1}{t}$. Furthermore, for each k we will have $\left(\nu+\frac{p-1}{t} k\right) d \equiv(\bmod p-1)$. Taking $\mu=\nu+\frac{p-1}{t} k$ for some k gives:

$$
\left\{\frac{\left(\nu+\frac{p-1}{t} k\right) a}{p-1}\right\}+\left\{\frac{\left(\nu+\frac{p-1}{t} k\right) b}{p-1}\right\}=\frac{2 t}{p-1}<1
$$

This implies that for all k :

$$
\left\{\frac{\nu a+\frac{p-1}{t} k a}{p-1}\right\} \leq \frac{2 t}{p-1}
$$

and similarly for b. Now let $s=\operatorname{gcd}(a, t)$ and take $a=a^{\prime} s$. Then this becomes:

$$
\left\{\frac{\nu a+\frac{(p-1)}{t / s} k a^{\prime}}{p-1}\right\} \leq \frac{2 t}{p-1}
$$

Note that k, a^{\prime} are both relatively prime to t / s. Thus $\nu a+\frac{(p-1)}{t / s} k a^{\prime}(\bmod p-1)$ ranges over all residues $x \equiv \nu a\left(\bmod \frac{p-1}{t / s}\right)$. Pick the k that gives the largest $x=\nu a+\frac{(p-1)}{t / s} k a^{\prime}(\bmod p-1)$ with $0<x<p-1$. We know $x \geq p-1-\frac{(p-1)}{t / s}$ (with equality if and only if $\frac{(p-1)}{t / s}$ divides a and hence $\frac{(p-1)}{t}$ divides a^{\prime}).

However, as $x \leq 2 t$ by the above, this implies:

$$
2 t+\frac{(p-1)}{t / s} \geq p-1
$$

where equality can only occur if $\frac{(p-1)}{t}$ divides a^{\prime}. If $s=t$ this follows immediately. Otherwise, note that t is at most $\frac{p-1}{3}$ and $\frac{(p-1)}{t / s}$ is at most $\frac{p-1}{2}$. Thus we have the following possibilities:

1. $s=t$
2. $t=2 s, t=\frac{p-1}{3}$
3. $t=2 s, t=\frac{p-1}{4}$, and $\frac{(p-1)}{t}=4$ divides a^{\prime}
4. $t=3 s, t=\frac{p-1}{3}$, and $\frac{(p-1)}{t}=3$ divides a^{\prime}

Note that possibilities 3 and 4 can't actually happen as the fact that $4 \mid a^{\prime}$ contradicts $t=2 s$ and $3 \mid a^{\prime}$ contradicts $t=3 s$. This same reasoning can be applied to b. Now suppose $t<\frac{p-1}{3}$. Then for both a, b we must have case 1. Thus $t \mid a$ and $t \mid b$. Let $d=c^{\prime} t, a=a^{\prime} t, b=b^{\prime} t$. Note that the minimum value of $\left\{\frac{\mu a}{p-1}\right\}$ is $\frac{\operatorname{gcd}(a, p-1)}{p-1}$ and similarly the minimum of $\left\{\frac{\mu b}{p-1}\right\}$ is $\frac{\operatorname{gcd}(b, p-1)}{p-1}$. As $\operatorname{gcd}(a, p-1), \operatorname{gcd}(b, p-1) \geq t$ and taking $\mu=\nu$ gives us:

$$
\left\{\frac{\nu a}{p-1}\right\}+\left\{\frac{\nu b}{p-1}\right\}=\frac{2 t}{p-1}
$$

We must have:

$$
\left\{\frac{\nu a}{p-1}\right\}=\left\{\frac{\nu b}{p-1}\right\}=\frac{t}{p-1}
$$

and thus $\operatorname{gcd}(a, p-1)=\operatorname{gcd}(b, p-1)=t$. Now note that ν satisfies: $\nu d \equiv t(\bmod p-1)$ and $\nu a \equiv t$ $(\bmod p-1)$. This implies:

$$
\nu(a-d) \equiv 0 \quad(\bmod p-1)
$$

which further gives:

$$
\nu\left(a^{\prime}-c^{\prime}\right) \equiv 0 \quad\left(\bmod \frac{p-1}{t}\right)
$$

But as ν is relatively prime to $\frac{p-1}{t}$ this implies $a^{\prime} \equiv c^{\prime}\left(\bmod \frac{p-1}{t}\right)$, which implies $a=d$. By the same reasoning $b=d$, which is a contradiction.

Thus we have shown that χ^{c} must have order 3. Let $s_{1}=\operatorname{gcd}(t, a)$ and $s_{2}=\operatorname{gcd}(t, b)$. As s_{1}, s_{2} are either t or $\frac{t}{2}, a$ and b must both be multiples of $\frac{p-1}{6}$. However, as $c=\frac{p-1}{3}$ or $\frac{2(p-1)}{3}$ the only way that we can have $a+b=2 c$ is if a or b is $\frac{p-1}{2}$, which is a contradiction on χ^{a}, χ^{b} having order >2.

As we have exhausted all possibilities,

$$
g\left(\chi^{a}\right) g\left(\chi^{b}\right) g\left(\chi^{c}\right)^{2}
$$

does not have argument a root of unity.

7 Fermat Surfaces

Definition 7.1. Let F_{r}^{n} denote the projective variety of dimension $r-1$ in \mathbb{P}^{r} defined by the polynomial,

$$
x_{0}^{n}+\cdots+x_{r}^{n}=0
$$

We call this the Fermat n, r hypersurface.

Conjecture 7.2. Let p be an odd prime. Let $\zeta_{X_{p}}$ be the zeta function of the Fermat-4,3 hypersurface over \mathbb{F}_{p}. Then

$$
\zeta_{X_{p}}=\left\{\begin{array}{lll}
\frac{-1}{(T-1)\left(p^{2} T-1\right)(p T+1)^{10}(p T-1)^{12}} & p \equiv 3 & (\bmod 4) \\
\frac{-1}{(T-1)\left(p^{2} T-1\right)(p T-1)^{8} g_{p}(T) h_{p}(T)} & p \equiv 1 & (\bmod 4)
\end{array}\right.
$$

where

$$
g_{p}(T)=\left\{\begin{array}{lll}
(p T+1)^{12} & p \equiv 5 & (\bmod 8) \\
(p T-1)^{12} & p \equiv 1 & (\bmod 8)
\end{array}\right.
$$

and

$$
h_{p}(T)=\left(p T-\frac{s^{2}}{p}\right)\left(p T-\frac{\bar{s}^{2}}{p}\right)
$$

where $s=a+b i$ is the unique complex number with a an odd positive integer, b an even positive integer, and $|s|=p$.

Proposition 7.3. For Fermat variety F_{r}^{n} defined over \mathbb{F}_{q}, the number of possible α is determined by the formula,

$$
\# A_{n, q}=\sum_{i=1}^{r}(-1)^{i}(d-1)^{i}
$$

where $d=\operatorname{gcd}(n, q-1)$.
Proof. Recall that $A_{n, p}=\left\{\left(\alpha_{0}, \ldots, \alpha_{r}\right): 0<\alpha_{i}<1, \sum d \alpha_{i} \in \mathbb{Z}, i=0, \ldots, r\right\}$ in this case. Since α_{i} have the same denominator, we consider only the numerator of α_{i}, and our problem become counting x_{i} such that

$$
x_{0}+x_{1}+\cdots+x_{r} \in d \mathbb{Z}
$$

Suppose we let x_{1}, \ldots, x_{r} take arbitrary value in $\{1, \ldots, d-1\}$, then the value of x_{0} is uniquely determined. This gives us $(d-1)^{r}$ possibilities. But we may be over counting. So apply the inclusion-exclusion formula.
Corollary 7.3.1. The Betti numbers of the Fermat n, r hypersurface are,

$$
\operatorname{dim} H^{i}\left(F_{r}^{n}\right)= \begin{cases}1 & 0 \leq i \leq 2(r-1) \text { is even and } i \neq r-1 \\ \sum_{j=0}^{r-1}(-1)^{j}(n-1)^{j}+1 & i=r-1 \text { is even } \\ \sum_{j=0}^{r-1}(-1)^{j}(n-1)^{j} & i=r-1 \text { is odd }\end{cases}
$$

Corollary 7.3.2. The Euler Characteristic of the Fermat n, r hypersurface is,

$$
\chi\left(F_{r}^{n}\right)=r+(-1)^{r-1} \sum_{j=0}^{r-1}(-1)^{j}(n-1)^{j}
$$

Theorem 7.4. The Fermat hypersurface F_{n-1}^{n} is never supersingular over \mathbb{F}_{p} when $p \equiv 1 \bmod n$ and $n>2$.
Proof. The Gaussian sum $g\left(\chi_{\alpha}\right)$ over \mathbb{F}_{p} is never a root of unity when normalized to the unit circle unless $\alpha=1,1 / 2$ (Chowla). Therefore, consider $\alpha=(1 / n, \cdots, 1 / n)$ which satisfied the conditions to be in $A_{n, p}$ since $r+1=n$. Therefore,

$$
(-1)^{r} B(\alpha) j(\alpha)=(-1)^{r} B(\alpha) g\left(\chi_{1 / n}\right)^{n}
$$

which is a root of ζ_{X} cannot be a root of unity when normalized to the unit circle because $(-1)^{r} B(\alpha)$ is a root of unity but $g\left(\chi_{1 / n}\right)^{n}$ is not since $g\left(\chi_{1 / n}\right)$ is not either by Chowla because $n>2$. Therefore, ζ_{X} contains a root which is not of the form $\omega q^{\frac{i}{2}}$ where ω is a root of unity so X is not supersingular.

Theorem 7.5. Let $n \geq 4$ be an integer and let $p \equiv 1(\bmod n)$ be a prime number. Then the zeta function for the Fermat curve (with points counted via the "stack quotient") given by the zero set of:

$$
w^{n}+x^{n}+y^{n}+z^{n}=0
$$

is not supersingular
Proof. By Theorem 5.3, we just need to show that

$$
\prod_{i=0}^{3} g\left(\chi \alpha_{i}\right)
$$

has argument not equal to a root of unity. For $n=4$ we take $\alpha_{i}=\frac{1}{4}$ for all i. By Theorem 6.1 this is does not have argument equal to a root of unity. For $n=6$ we take $\alpha_{0}=\frac{1}{2}$ and $\alpha_{i}=\frac{1}{6}$ for $i \neq 0$. Again, by Theorem 6.1 this is does not have argument equal to a root of unity. For all other $n \geq 4$ we take $\alpha_{0}=\frac{n-3}{n}$ and $\alpha_{i}=\frac{1}{n}$ for $i \neq 0$. By Theorem 6.6 this does not have argument equal to a root of unity.

8 Non-Supersingularity using Factorization of Gauss Sums

In this section, let X be a variety defined by,

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

over \mathbb{F}_{p}, where p is a prime not dividing $m=\operatorname{lcm}\left(n_{0}, \ldots, n_{r}\right)$. Furthermore, let $f=\operatorname{ord}_{m}(p)$.
Proposition 8.1. If $p \equiv 1 \bmod m$ for $m \geq 4$ and $r \geq 3$ then F_{r}^{m} is not supersingular.
Proof. Notice that in this case $f=1$, and $q=p$. If F_{r}^{m} were supersingular then, by Theorem 6.15 , for each choice of $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$and character powers $e_{0}, \cdots e_{r}$ that,

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) \mu r_{i}}{m}\right)=\frac{r+1}{2}(p-1) f
$$

Consider the case $\mu=1$ and choose a set of characters such that

$$
e_{0}+\cdots+e_{r}=m\left\lfloor\frac{r}{2}\right\rfloor
$$

This is always possible with $0<e_{i}<m$ since $r+1 \leq m\left\lfloor\frac{r}{2}\right\rfloor<m r$. In this case, since $f=1$ and $\mu=1$,

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) \mu r_{i}}{m}\right)=(p-1) \sum_{i=0}^{r}\left\{\frac{e_{i}}{m}\right\}=(p-1) \sum_{i=0}^{r} \frac{e_{i}}{m}=(p-1)\left\lfloor\frac{r}{2}\right\rfloor<(p-1) \frac{r+1}{2}
$$

Therefore, by Theorem 6.14, F_{r}^{m} cannot be supersingular.
Proposition 8.2. Let p be a prime, and $f>2$, let $n=\frac{p^{f}-1}{p-1}$. Then F_{3}^{n} is not supersingular over \mathbb{F}_{p}.
Proof. Let $\mu=1$, and $\bar{r}=(1,1,1, m-3)$. We know that $s\left(\frac{(q-1) \mu r}{m}\right)=p-1$ when $r=1$ using the fraction part formula for s because all the terms are less than 1 .

Now consider

$$
s\left(\frac{(m-3)(q-1)}{m}\right)=(p-1) \sum_{i=1}^{f-1}\left\{\frac{(m-3) p^{i}}{m}\right\}
$$

If $i<f-1$, then $3 p^{i}<m$, so

$$
\left\{\frac{(m-3) p^{i}}{m}\right\}=1-\frac{3 p^{i}}{m}
$$

If $i=f-1$, then use the relation

$$
p^{f-1}=m-\left(1+p+\cdots+p^{f-2}\right)
$$

so

$$
\left\{\frac{(m-3)\left(m-\left(1+p+\cdots+p^{f-2}\right)\right)}{m}\right\}=\frac{3\left(1+p+\cdots+p^{f-2}\right)}{m}
$$

. As a result, $s\left(\frac{(q-1)(m-3)}{m}\right)=(p-1)(f-1)$. And

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) r_{i}}{n}\right)=(f+2)(p-1)<2 f(p-1)
$$

if $f>2$. Therefore, F_{3}^{n} cannot be supersingular if $f>2$.
Proposition 8.3. When f is even, and $n=\frac{p^{f}-1}{p^{2}-1}$, then F_{3}^{n} is not supersingular.
Proof. Let $\mu=1, \bar{r}=(1,1,1, n-3)$, and write $m=1+p^{2}+p^{4}+\cdots+p^{f-2}$. Notice that $p^{f-1}=$ $p m-\left(p+p^{3}+\cdots+p^{f-3}\right)$. When $r=1$,

$$
\begin{aligned}
s\left(\frac{(q-1)}{m}\right) & =(p-1) \sum_{i=1}^{f-1}\left\{\frac{p^{i}}{m}\right\} \\
& =(p-1)\left(\sum_{i=0}^{f-2}\left(\frac{p^{i}}{m}\right)+\left\{\frac{p m-\left(p+p^{3}+\cdots+p^{f-3}\right)}{m}\right\}\right) \\
& =(p-1)\left(1+\frac{1+p^{2}+\cdots+p^{f-2}}{m}\right) \\
& =2(p-1)
\end{aligned}
$$

When $r=m-3$, we have

$$
\begin{aligned}
s\left(\frac{(q-1)(m-3)}{m}\right) & =(p-1) \sum_{i=1}^{f-1}\left\{\frac{p^{i}(m-3)}{m}\right\} \\
& =(p-1)\left(\sum_{i=0}^{f-2}\left(1-\frac{3 p^{i}}{m}\right)+\left\{\frac{(m-3)\left(p m-\left(p+p^{3}+\cdots+p^{f-3}\right)\right)}{m}\right\}\right) \\
& =(p-1)\left(f-1+\sum_{i=0}^{f-2}\left(-\frac{3 p^{i}}{m}\right)+\frac{3\left(p+p^{3}+\cdots+p^{f-3}\right)}{m}\right) \\
& =(p-1)\left(f-1-\frac{3 m}{m}\right) \\
& =(p-1)(f-4) .
\end{aligned}
$$

In total we still have

$$
\sum_{i=0}^{r} s\left(\frac{(q-1) r_{i}}{n}\right)=(f+2)(p-1)<2 f(p-1)
$$

Proposition 8.4. When $n=p+a$ for $1<a<p$, and $\operatorname{ord}_{n}(p)=2$, the Fermat variety X_{n} is not supersingular.

Proof. Still consider $\mu=1, \bar{r}=(1,1,1, n-3)$. We have $\{1 / n\}+\{p / n\}=(1+p) / n<1$ for $r=1$. And since $\operatorname{ord}_{n}(p)=2$, n does not divides $p-1$ but n divides $p^{2}-1$, so $n \mid(p+1)$. Then $\{(n-3) / n\}+\{(n-3) p / n\}$ is an integer. Thus it has to be 1. This tell us that the sum of the s functions is less than $4(p-1)$. Therefore, X_{n} is not supersingular.

Conjecture 8.5. For p a prime, and $f>2$, let $n=\Phi_{f}(p)=\frac{p^{f}-1}{k(p)}$, then $\operatorname{ord}_{n}(p)=f$, and the Fermat surface F_{3}^{n} is not supersingular.

Lemma 8.6. Let X be a variety defined by the zero set of the equation:

$$
a_{0} x_{0}^{n_{0}}+a_{1} x_{1}^{n_{1}}+a_{2} x_{2}^{n_{2}}+a_{3} x_{3}^{n_{3}}=0
$$

over $\mathbb{F}_{p^{k}}$ with $a_{i} \in \mathbb{Z}, n_{i} \in \mathbb{Z}_{\geq 1}$. Let $m=\operatorname{lcm}\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$ and let $w_{i}=\frac{m}{n_{i}}$ for $i=0,1,2,3$. Then X is supersingular if and only if for all $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$and $e_{0}, e_{1}, e_{2}, e_{3} \in \mathbb{Z}$ with $m \mid e_{0}+e_{1}+e_{2}+e_{3}$, wi $\mid e_{i}$, $0<e_{i}<m$ we have:

$$
\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{-\mu e_{2} p^{i}}{m}\right\}+\left\{\frac{-\mu e_{3} p^{i}}{m}\right\}\right)
$$

Proof. By Theorem 3.1, we only need to prove that it is supersingular over \mathbb{F}_{q} for some power $q=p^{f}$. Suppose r is the smallest positive integer such that $p^{r} \equiv-1(\bmod m)$. We'll take $f=2 r$, so that f is the minimal integer for which $m \mid p^{f}-1$.

Let χ be a character of order m. Now, by Corollary 5.4.1, X is supersingular if the product of Gaussian sums for each α has argument root of unity. That is,

$$
\prod_{i=0}^{3} g\left(\chi^{e_{i}}\right)
$$

must always have argument a root of unity where $m \mid e_{0}+e_{1}+e_{2}+e_{3}, 0<e_{i}<m$, and $w_{i} \mid e_{i}$ for each i.
Consider the ideal generated by,

$$
q^{-2} \prod_{i=0}^{3} g\left(\chi^{e_{i}}\right)=\frac{g\left(\chi^{e_{0}}\right) g\left(\chi^{e_{1}}\right) \chi^{e_{2}+e_{3}}(-1)}{g\left(\chi^{-e_{2}}\right) g\left(\chi^{-e_{3}}\right)}
$$

By Corollary 6.13.1, this is a root of unity if and only if the ideal generated by it is \mathcal{O}, which will occur if and only if the valuation of each prime ideal in $\mathbb{Q}\left(\zeta_{m}, \zeta_{p}\right)$ is 0 . By Theorem 6.4 , this will occur if and only if:

$$
s\left(\frac{(q-1) \mu e_{0}}{m}\right)+s\left(\frac{(q-1) \mu e_{1}}{m}\right)=s\left(\frac{-(q-1) \mu e_{2}}{m}\right)+s\left(\frac{-(q-1) \mu e_{3}}{m}\right)
$$

for all μ relatively prime to m where $s(n)$ is the sum of the digits of $n(\bmod q-1)$ in base p. Even Further, by [Lang's Algebraic Number Theory Page 96], this is equivalent to:

$$
\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{-\mu e_{2} p^{i}}{m}\right\}+\left\{\frac{-\mu e_{3} p^{i}}{m}\right\}\right)
$$

as desired.
Definition 8.7. Define the sum,

$$
S_{\mu}\left(e_{0}, \ldots, e_{t}\right)=s\left(\frac{(q-1) \mu e_{0}}{m}\right)+\cdots+s\left(\frac{(q-1) \mu e_{t}}{m}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\cdots+\left\{\frac{\mu e_{t} p^{i}}{m}\right\}\right)
$$

Corollary 8.7.1. X is supersingular if and only if the value of the sum,

$$
S_{\mu}\left(e_{0}, e_{1}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)
$$

for each fixed value of $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$depends only on $E \equiv e_{0}+e_{1} \bmod m$.

Proof. We know that X is supersingular if and only if,

$$
\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{-\mu e_{2} p^{i}}{m}\right\}+\left\{\frac{-\mu e_{3} p^{i}}{m}\right\}\right)
$$

for each $\mu \in(Z / m \mathbb{Z})^{\times}$and $e_{0}, e_{1}, e_{2}, e_{3}$ such that $m \mid e_{0}+e_{1}+e_{2}+e_{3}$ and $w_{i} \mid e_{i}$. Therefore, whenever,

$$
E \equiv e_{0}+e_{1} \equiv-e_{2}-e_{3} \quad \bmod m
$$

we must have that $S_{\mu}\left(e_{0}, e_{1}\right)=S_{\mu}\left(-e_{2},-e_{3}\right)$. This is equivalent to S_{μ} depending on E alone.
Lemma 8.8. Let p be a prime number, f be a positive integer, m be an integer not divisible by p, and $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$. For integers $m \nmid e_{0}, e_{1}$ define:

$$
N_{\mu}\left(e_{0}, e_{1}\right)=\#\left\{i:\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}<\left\{\frac{\mu e_{0} p^{i}}{m}\right\}\right\}
$$

where $i=0, \ldots, f-1$, then

$$
S_{\mu}\left(e_{0}, e_{1}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)=N_{\mu}\left(e_{0}, e_{1}\right)+\sum_{i=0}^{f-1}\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}=N_{\mu}\left(e_{0}, e_{1}\right)+S_{\mu}\left(e_{0}+e_{1}\right)
$$

Proof. Note that

$$
\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}
$$

is either equal to $\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}$ or $\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}+1$. If it is equal to the former, then

$$
\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\} \geq\left\{\frac{\mu e_{0} p^{i}}{m}\right\}
$$

If it is equal to the latter, then

$$
\left\{\frac{\mu e_{0} p^{i}}{m}\right\}=\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}-\left\{\frac{\mu e_{1} p^{i}}{m}\right\}+1>\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}
$$

Thus we have:

$$
\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}= \begin{cases}\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\} & \left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\} \geq\left\{\frac{\mu e_{0} p^{i}}{m}\right\} \\ \left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}+1 & \left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}<\left\{\frac{\mu e_{0} p^{i}}{m}\right\}\end{cases}
$$

Corollary 8.8.1. If $e_{0}+e_{1} \equiv 0 \bmod m$ then $S_{\mu}\left(e_{0}, e_{1}\right)=N_{\mu}\left(e_{0}, e_{1}\right)=f$.
Proof.

$$
S_{\mu}\left(e_{0}, e_{1}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)=N_{\mu}\left(e_{0}, e_{1}\right)+\sum_{i=0}^{f-1}\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}
$$

However, $m \mid e_{0}+e_{1}$ so the fractional part of all multiplies of their quotient is zero. Thus,

$$
\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}=0
$$

Therefore, the second sum is zero. Furthermore, since $m \nmid e_{0}$ and $(m, p)=(m, \mu)=1$ we have that,

$$
0 \leq\left\{\frac{\mu e_{0} p^{i}}{m}\right\}
$$

for each i. Therefore, $N\left(e_{0}, e_{1}\right)=f$.

Lemma 8.9. The product $q^{-2} g\left(\chi^{e_{0}}\right) g\left(\chi^{e_{1}}\right) g\left(\chi^{e_{2}}\right) g\left(\chi^{e_{3}}\right)$ is a root of unity if and only if $N_{\mu}\left(e_{0}, e_{1}\right)+N_{\mu}\left(e_{2}, e_{3}\right)=$ f for each $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$

Proof. By Theorem 6.14 we need only check if,

$$
\sum_{i=0}^{3} s\left(\frac{(q-1) \mu e_{i}}{m}\right)=2(p-1) f
$$

for each $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$. However, because $m \mid e_{0}+e_{1}+e_{3}+e_{4}$ by Corollary 8.8.1,

$$
S_{\mu}\left(e_{0}+e_{1}\right)+S_{\mu}\left(e_{2}+e_{3}\right)=S_{\mu}\left(e_{0}+e_{1}, e_{2}+e_{3}\right)=f
$$

Furthermore, by Lemma, 8.8,
$S_{\mu}\left(e_{0}, e_{1}\right)+S_{\mu}\left(e_{2}, e_{3}\right)=N_{\mu}\left(e_{0}, e_{1}\right)+N_{\mu}\left(e_{2}, e_{3}\right)+S_{\mu}\left(e_{0}+e_{1}\right)+S_{\mu}\left(e_{2}+e_{3}\right)=N_{\mu}\left(e_{0}, e_{1}\right)+N_{\mu}\left(e_{2}, e_{3}\right)+f$
Thus,

$$
S_{\mu}\left(e_{0}, e_{1}\right)+S_{\mu}\left(e_{2}, e_{3}\right)=\frac{1}{p-1} \sum_{i=0}^{3} s\left(\frac{(q-1) \mu e_{i}}{m}\right)=2 f \Longleftrightarrow N_{\mu}\left(e_{0}, e_{1}\right)+N_{\mu}\left(e_{2}, e_{3}\right)=f
$$

Theorem 8.10. Let X be a variety defined by the zero set of the equation:

$$
a_{0} x_{0}^{n_{0}}+a_{1} x_{1}^{n_{1}}+a_{2} x_{2}^{n_{2}}+a_{3} x_{3}^{n_{3}}=0
$$

over $\mathbb{F}_{p^{k}}$ with $a_{i} \in \mathbb{Z}, n_{i} \in \mathbb{Z}_{\geq 1}$. Let $m=\operatorname{lcm}\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$. If $a_{i} \neq 0$ in \mathbb{F}_{p} for all i and there exists r such that $p^{r} \equiv-1(\bmod m)$, then X is supersingular.

Proof. By Corollary 8.7.1, if we can show that for all $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$and e_{0}, e_{1} with $0<e_{0}, e_{1}<m$ the sum $S_{\mu}\left(e_{0}, e_{1}\right)$ is only a function of $E=e_{0}+e_{1}$, then X is supersingular. Let $N\left(e_{0}, e_{1}\right)$ be as defined in lemma 8.8. If $m \mid E$, then we will always have:

$$
\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}<\left\{\frac{\mu e_{0} p^{i}}{m}\right\}
$$

and thus $N\left(e_{0}, e_{1}\right)=f$. If $m \nmid E$, then note that as $p^{r} \equiv-1(\bmod m)$, we have:

$$
\left\{\frac{\mu E p^{i+r}}{m}\right\}=\left\{\frac{-\mu E p^{i}}{m}\right\}=1-\left\{\frac{\mu E p^{i}}{m}\right\}
$$

Therefore, applying this procedure to the above inequality,
$\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i+r}}{m}\right\}<\left\{\frac{\mu e_{0} p^{i+r}}{m}\right\} \Longleftrightarrow 1-\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}<1-\left\{\frac{\mu e_{0} p^{i}}{m}\right\} \Longleftrightarrow\left\{\frac{\mu e_{0} p^{i}}{m}\right\}<\left\{\frac{\mu\left(e_{0}+e_{1}\right) p^{i}}{m}\right\}$
Furthermore, since $m \nmid e_{0}, e_{1}$ the inequality must always be strict. Since $f=2 r$, this symmetry implies that $N\left(e_{0}, e_{1}\right)=\frac{f}{2}$. Note that $N\left(e_{0}, e_{1}\right)$ is constant. Thus by Lemma 8.8,

$$
S_{\mu}\left(e_{0}, e_{1}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)
$$

is a function of E alone and thus X is supersingular.
Theorem 8.11. If there exists $v \in \mathbb{Z}$ such that $p^{v} \equiv-1 \bmod m$ then F_{r}^{m} is supersingular for any r.

Proof. Consider the sum,

$$
S_{\mu}\left(e_{1}, \ldots, e_{r}\right)=\frac{1}{p-1} \sum_{i=0}^{r} s\left(\frac{\mu(q-1) e_{i}}{m}\right)=\sum_{i=0}^{r} \sum_{j=0}^{f-1}\left\{\frac{\mu e_{i} p^{j}}{m}\right\}
$$

which we can rearrange as,

$$
S_{\mu}\left(e_{1}, \ldots, e_{r}\right)=\sum_{i=0}^{r}\left(\sum_{j=0}^{\frac{f}{2}-1}\left\{\frac{\mu e_{i} p^{j}}{m}\right\}+\sum_{j=0}^{\frac{f}{2}-1}\left\{\frac{\mu e_{i} p^{j+\frac{f}{2}}}{m}\right\}\right)
$$

However, since $f=\operatorname{ord}_{m} p$ and the hypothesis, we know that $p^{\frac{f}{2}} \equiv-1 \bmod m$. Thus,

$$
\left\{\frac{\mu e_{i} p^{j+\frac{f}{2}}}{m}\right\}=\left\{\frac{-\mu e_{i} p^{j}}{m}\right\}=1-\left\{\frac{\mu e_{i} p^{j}}{m}\right\}
$$

Therefore, plugging in,

$$
S_{\mu}\left(e_{1}, \ldots, e_{r}\right)=\sum_{i=0}^{r}\left(\sum_{j=0}^{\frac{f}{2}-1}\left\{\frac{\mu e_{i} p^{j}}{m}\right\}+\sum_{j=0}^{\frac{f}{2}-1}\left[1-\left\{\frac{\mu e_{i} p^{j}}{m}\right\}\right]\right)=\sum_{i=0}^{r} \sum_{j=0}^{\frac{f}{2}-1} 1=(r+1) \frac{f}{2}
$$

Thus, by Theorem 6.15, F_{r}^{m} is supersingular.
Lemma 8.12. Let $\sigma \in S_{n}$ be a permutation and $C \in S_{n}$ be the standard n-cycle,

$$
C=(123 \cdots n)
$$

Define the function,

$$
g(\sigma, k)=\#\left\{i \in[n] \mid \sigma(i)<\sigma C^{k}(i)\right\}
$$

Then $g(\sigma, k)+g(\sigma, n-k)=n$ for all $0<k<n$.
Proof. Since σ is a permutation, we can reindex the set in the definition of g by $j=\sigma(i)$ such that,

$$
g(\sigma, k)=\#\left\{j \in[n] \mid j<\sigma C^{k} \sigma^{-1}(j)\right\}
$$

However, conjugation is an automorphism so,

$$
\sigma C^{k} \sigma^{-1}=\left(\sigma C \sigma^{-1}\right)^{k}=C_{\sigma}^{k}
$$

where $C_{\sigma}=\sigma C \sigma^{-1}$ is also an n cycle (with order n) since conjugation preserves cycle type. Thus,

$$
g(\sigma, k)=\#\left\{j \in[n] \mid j<C_{\sigma}^{k}(j)\right\}
$$

However, if $j<C_{\sigma}^{k}(j)$ then define $\tilde{j}=C_{\sigma}^{k}(j)$ or equivalently $C_{\sigma}^{n-k}(\tilde{j})=j$ such that,

$$
C_{\sigma}^{n-k}(\tilde{j})<\tilde{j}
$$

However, n cycles act freely on $[n]$ so there are no fixed points of C_{σ}^{k} for any $0<k<n$. Thus, the set of \tilde{j} such that $C_{\sigma}^{n-k}(\tilde{j})<\tilde{j}$ is exactly the compliment of the set such that $\tilde{j}<C_{\sigma}^{n-k}(\tilde{j})$. Therefore, $j \in g(\sigma, k) \Longleftrightarrow \tilde{j} \notin g(\sigma, n-k)$ so,

$$
g(\sigma, k)=\left\{\tilde{j} \in[n] \mid C_{\sigma}^{n-k}(\tilde{j})<\tilde{j}\right\}=n-g(\sigma, n-k)
$$

Corollary 8.12.1. If there exists $\sigma \in S_{n}$ such that $g(\sigma, k)=g(\sigma, n-k)$ then $g(\sigma, k)=\frac{n}{2}$. In particular, this is true if $g(\sigma, k)$ is constant for $0<k<n$.

Corollary 8.12.2. If n is odd then $g(\sigma, k) \neq g(\sigma, n-k)$ for all $0<k<n$. In particular, this means that if n is odd, then there cannot exits $\sigma \in S_{n}$ such that $g(\sigma, k)$ is constant for all $0<k<n$.

Lemma 8.13. Let $m, p, e_{0}, e_{1}, f, N\left(e_{0}, e_{1}\right)$ be as in lemma 8.8. If $f>1, m \mid p^{f}-1$ and E is such that $m \nmid E(p-1)$ and there exists a K such that for all $e_{1}+e_{2} \equiv E(\bmod M)$ with $m \nmid e_{1}, e_{2}$, we have

$$
N_{\mu}\left(e_{0}, e_{1}\right)=K
$$

then $K=\frac{f}{2}$ where $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$is fixed.
Proof. Suppose that such an E exists. Let

$$
a_{i}=\left\{\frac{\mu E p^{i}}{m}\right\}
$$

Note as $m \mid p^{f}-1$, we have $a_{i+f}=a_{i}$. Suppose $a_{i}=a_{j}$ for some integers i, j. Then we have:

$$
E p^{i} \equiv E p^{j} \quad(\bmod m)
$$

which is true if and only if

$$
E\left(p^{i-j}-1\right) \equiv 0 \quad(\bmod m)
$$

This we hold only when $i-j$ is multiple of some integer t. As a result $a_{i+t}=a_{i}$ but $a_{0}, a_{1}, \ldots, a_{t-1}$ are distinct. Furthermore, since $m \nmid E(p-1)$ we have $t>1$. For notation purposes. We now let permutations $\pi \in S_{t}$ act on the sequence a_{i}. As $a_{0}, a_{1}, \ldots, a_{t-1}$ are distinct, there exists a permutation $\sigma \in S_{t}$ such that for $i=0, \ldots, t-1$. $a_{\sigma}(i)<a_{\sigma}(j)$ if and only if $i<j$ for $0 \leq i, j \leq t-1$. Since the condition $N_{\mu}\left(e_{0}, e_{1}\right)=K$ must hold for all $e_{0}+e_{1} \equiv E \bmod m$ we may pick a particualr value of,

$$
\left.e_{0}\right|_{j}=E p^{j} \text { and }\left.e_{1}\right|_{j}=E-\left.e_{0}\right|_{j}
$$

for any $1 \leq j \leq t-1$. In this case,

$$
\left\{\frac{\left.\mu e_{0}\right|_{j} p^{i}}{m}\right\}=a_{i+j}
$$

Thus if we let $C=(12 \cdots t) \in S_{t}$, then this can be rewritten as:

$$
\left\{\frac{\left.\mu e_{0}\right|_{j} p^{i}}{m}\right\}=a_{C^{j}(i)}
$$

By definition,

$$
K=N_{\mu}\left(\left.e_{0}\right|_{j},\left.e_{1}\right|_{j}\right)=\#\left\{0 \leq i<t: a_{i}<a_{i+j}\right\}
$$

As a_{i} is periodic, this is implies

$$
\begin{aligned}
K & =\frac{f}{t} \#\left\{i: a_{i}<a_{C^{j}(i)}\right\} \\
& =\frac{f}{t} \#\left\{i: \sigma^{-1}(i)<\sigma^{-1}\left(C^{j}(i)\right)\right\}=\frac{f}{t} g\left(\sigma^{-1}, j\right)
\end{aligned}
$$

However, by lemma 8.12,

$$
g\left(\sigma^{-1}, j\right)=g(k)=t-g(t-k)
$$

As $t>1$, taking $k=1$ implies $g\left(\sigma^{-1}, k\right)=\frac{t}{2}$. Thus:

$$
K=\left(\frac{f}{t}\right)\left(\frac{t}{2}\right)=\frac{f}{2}
$$

Theorem 8.14. If f is odd and $f>1$, then F_{3}^{m} is not supersingular

Proof. By Corollary 8.7.1, F_{3}^{m} is supersingular only if for all e_{0}, e_{1} with $0<e_{0}, e_{1}<m$ we have that

$$
S_{\mu}\left(e_{0}, e_{1}\right)=\sum_{i=0}^{f-1}\left(\left\{\frac{\mu e_{0} p^{i}}{m}\right\}+\left\{\frac{\mu e_{1} p^{i}}{m}\right\}\right)
$$

is only a function of $E=e_{0}+e_{1}$. Consider the case $E=1$. Let $N\left(e_{0}, e_{1}\right)$ be defined as in lemma 8.8. By the same lemma, the above being a function of E is equivalent to $N\left(e_{0}, e_{1}\right)$ being constant across $e_{0}+e_{1}$. By lemma 8.13 , if it is constant for fixed E, then it must always be $\frac{f}{2}$. However, as $N\left(e_{0}, e_{1}\right)$ is integer-valued this is impossible. Thus we have a contradiction, so F_{3}^{m} is not supersingular.

Theorem 8.15. Let $f=\operatorname{ord}_{n}(p)$. If f is odd and $f>1$, then F_{2}^{n} is not supersingular
Proof. By Theorem 3.1, we only need to prove that it is supersingular over \mathbb{F}_{q} for some power $q=p^{f}$. Let χ be a character of order n. By Theorem 5.3, we have that

$$
\zeta(T)=\frac{p(T)}{q(T)}
$$

where $p(T)=-1$ and the roots of $q(T)$ are of the form:

$$
\prod_{i=0}^{2} \chi^{e_{i}}\left(a_{i}^{-1}\right) \prod_{i=0}^{2} g\left(\chi^{e_{i}}\right)
$$

where $m \mid e_{0}+e_{1}+e_{2}$ and $0<e_{i}<n$, and $w_{i} \mid e_{i}$ for each i. The product $\prod_{i=0}^{2} \chi^{e_{i}}\left(a_{i}^{-1}\right)$ will always be a root of unity. Thus to show $\zeta(T)$ is supersingular, we just need to show that $\prod_{i=0}^{2} g\left(\chi^{e_{i}}\right)$ always has argument a root of unity. We will now do so.

Consider the ideal generated by,

$$
q^{-3 / 2} \prod_{i=0}^{2} g\left(\chi^{e_{i}}\right)=\frac{g\left(\chi^{e_{0}}\right) g\left(\chi^{e_{1}}\right) \chi^{e_{2}}(-1)}{q^{-1 / 2} g\left(\chi^{-e_{2}}\right)}
$$

By Corollary 6.13.1, this is a root of unity if and only if the ideal generated by it is R, which will occur if and only if the valuation of each prime ideal in $\mathbb{Q}\left(\zeta_{n}, \zeta_{p}\right)$ is 0 . By Theorem 6.4 , this will occur if and only if:

$$
s\left(\frac{(q-1) \mu e_{0}}{n}\right)+s\left(\frac{(q-1) \mu e_{1}}{n}\right)=s\left(\frac{-(q-1) \mu e_{2}}{n}\right)+\frac{f}{2}
$$

By [Lang Algebra Page 96] this is equal to,

$$
\sum_{i=0}^{f}\left(\left\{\frac{\mu e_{0} p^{i}}{n}\right\}+\left\{\frac{\mu e_{1} p^{i}}{n}\right\}-\left\{\frac{\mu-e_{2} p^{i}}{n}\right\}\right)=\frac{f}{2}
$$

However, as $e_{0}+e_{1} \equiv-e_{2}(\bmod n)$, each term in the above summation must be either 1 or 0 . Thus the left hand side is an integer. However, if f is odd, the right hand side is not. Thus this equality cannot possibly happen.

Theorem 8.16. Let f be odd and m be even, then the Fermat variety F_{3}^{m} is not supersingular.
Proof. We know that X is supersingular if and only if $q^{-2} \prod_{i=0}^{3} g\left(\chi^{e_{i}}\right)$ is a root of unity, where $m \mid e_{0}+e_{1}+$ $e_{2}+e_{3}$ and $0<e_{i}<m$ for each i.
Let $e_{0}+e_{1}=E_{0}$, and $e_{2}+e_{3}=E_{2}$. By lemma 8.9, we know that V_{m} is supersingular if and only if $N\left(e_{0}, e_{1}\right)+N\left(e_{2}, e_{3}\right)=f$. Now let $E_{0}+E_{2}=3 m$, and $e_{0}=e_{2}, e_{1}=e_{3}$. Then $E_{0}=3 / 2 m$ is an integer because m is even. But $N_{0} \neq f / 2$ because N_{0} is an integer but f is odd, so $f / 2$ is not an integer. We also know that $N_{0}=N_{2}$, since $e_{0}=e_{2}, e_{1}=e_{3}$. Thus it is impossible that $N_{0}+N_{2}=f$. Therefore, F_{3}^{m} is not supersingular.

Theorem 8.17. Let f be odd, the Fermat variety F_{r}^{m} is not supersingular if r is odd.
Proof. We prove this using Theorem ?? and Lemma 8.8.
We know that F_{r}^{m} is supersingular if and only if

$$
\sum_{i=0}^{r} S_{\mu}\left(e_{i}\right)=(p-1)(r+1) f / 2
$$

for all $\mu \in(\mathbb{Z} / m \mathbb{Z})^{\times}$, and $m \mid e_{0}+e_{1}+\cdots+e_{r}$ and $0<e_{i}<m$ for each i. Thus, we can choose e_{i} for $i>3$ such that $m \mid e_{i}+e_{i+1}$. Then for any given $\mu, S_{\mu}\left(e_{i}, e_{i+1}\right)=f$ by Lemma 8.8.

On the other hand, choose e_{0}, \ldots, e_{3} as in Theorem ??, then $S_{\mu}\left(e_{0}, e_{1}, e_{2}, e_{3}\right) \neq 2 f$.
Therefore, we have

$$
\sum_{i=0}^{r} S_{\mu}\left(e_{i}\right) \neq(p-1)(r+1) f / 2
$$

for this chosen set of e_{i}, so F_{r}^{m} is not supersingular.

Conjecture 8.18. Let $q=p^{n}$, p a prime and $n \in \mathbb{Z}^{+}$, be the order of our finite field \mathbb{F}_{q} and let N_{μ} be the number of solutions $\left(e_{0}, e_{1}, e_{2}, e_{3}\right)$ with $0<e_{i}<q-1$ all distinct and $\mu \in \mathbb{Z}^{+}$with $(\mu, q-1)=1$ satisfying $s\left(\mu e_{0}\right)+s\left(\mu e_{1}\right)=s\left(\mu e_{2}\right)+s\left(\mu e_{3}\right)$. We conjecture that $N_{1}=N_{p}$, and for $\mu_{j}, \mu_{k}>p, N_{\mu_{j}}=N_{\mu_{k}}$ if μ_{j} and μ_{k} share the same largest factor.

9 Sum-Product Varieties

9.1 Introduction

In this section we concern ourselves with the family of varieties,

$$
x_{1}+\cdots+x_{d}=\lambda x_{1} \cdots x_{d}
$$

over the finite field \mathbb{F}_{q}. In the process, we will study the m-values which are solutions to the set of simultaneous equations,

$$
x_{1}+\cdots+x_{d}=z \quad \text { and } \quad x_{1} \cdots x_{d}=y
$$

over \mathbb{F}_{q}. (Motivation?)
Definition 9.1. The integer, $m_{y, z}^{d, q}$ is the number of solutions to the set simultaneous of equations,

$$
\begin{gathered}
x_{1}+\cdots+x_{d}=z \\
x_{1} \cdots x_{d}=y
\end{gathered}
$$

over \mathbb{F}_{q}.
Definition 9.2. The diagonal hyper-plane number is the number of solutions,

$$
H_{z}^{d}(S)=\#\left\{x_{1}+\cdots+x_{d}=z \mid x_{i} \in S\right\}
$$

where $S \subset K$ and $z \in K$ for some field K.
Proposition 9.3. For any $z \in \mathbb{F}_{q}$ we have $H_{z}^{d}\left(\mathbb{F}_{q}\right)=q^{d-1}$ and for $z \in \mathbb{F}_{q}$ we have,

$$
H_{z}^{d}\left(\mathbb{F}_{q}^{\times}\right)=\frac{1}{q}\left[(q-1)^{d}+\left(q \delta_{z}-1\right)(-1)^{d}\right]
$$

Proof. For any choice of $x_{1}, \cdots, x_{d-1} \in \mathbb{F}_{q}$ there is a unique $x_{d} \in \mathbb{F}_{q}$ such that $x_{1}+\cdots+x_{d}=z$. Thus, $H_{z}^{d}\left(\mathbb{F}_{q}\right)=q^{d-1}$. We will no count how many solutions contain no zeros. By inclusion exclusion,

$$
\begin{aligned}
H_{z}^{d}\left(\mathbb{F}_{q}^{\times}\right) & =H_{z}^{d}\left(\mathbb{F}_{q}\right)-\binom{d}{1} H_{z}^{d-1}\left(\mathbb{F}_{q}\right)+\binom{d}{2} H_{z}^{d-2}\left(\mathbb{F}_{q}\right)+\cdots+\binom{d}{d}(-1)^{d} H_{z}^{0}\left(\mathbb{F}_{d}\right) \\
& =\sum_{i=0}^{d-1}\binom{d}{i}(-1)^{i} q^{d-1-i}+(-1)^{d} \delta_{z}=\frac{1}{q}\left[\sum_{i=0}^{d-1}\binom{d}{i}(-1)^{i} q^{d-i}\right]+(-1)^{d} \delta_{z} \\
& =\frac{1}{q}\left[(q-1)^{d}-(-1)^{d}\right]+(-1)^{d} \delta_{z}
\end{aligned}
$$

where the factor of δ_{z} comes from the fact that for $z \neq 0$ the set $H_{z}^{0}\left(\mathbb{F}_{q}\right)$ is empty but for $z=0$ has one element representing the all zero solution to the original problem. Therefore,

$$
H_{z}^{d}\left(\mathbb{F}_{q}^{\times}\right)=\frac{1}{q}\left[(q-1)^{d}+\left(q \delta_{z}-1\right)(-1)^{d}\right]
$$

Proposition 9.4.

$$
m_{0, z}^{d, q}=q^{d-1}-\frac{1}{q}\left[(q-1)^{d}+\left(q \delta_{z}-1\right)(-1)^{d}\right]
$$

Proof. Solutions to the set of simultaneous equations $x_{1}+\cdots x_{d}=z$ and $x_{1} \cdots x_{d}=0$ are exactly those solutions to $x_{1}+\cdots+x_{d}=z$ which are not all elements of \mathbb{F}_{q}^{\times}. Therefore,

$$
m_{0, z}^{d, q}=H_{z}^{d}\left(\mathbb{F}_{q}\right)-H_{z}^{d}\left(\mathbb{F}_{q}^{\times}\right)=q^{d-1}-\frac{1}{q}\left[(q-1)^{d}+\left(q \delta_{z}-1\right)(-1)^{d}\right]
$$

Corollary 9.4.1. For $z \neq 0$ we have, $m_{0, z}^{d, q}-m_{0,0}^{d, q}=(-1)^{d}$

Proposition 9.5.

$$
\sum_{y \in \mathbb{F}_{q}} m_{y, z}^{d, q}=q^{d-1} \quad \text { and } \quad \sum_{z \in \mathbb{F}_{q}} m_{y, z}^{d, q}= \begin{cases}(q-1)^{d-1} & y \neq 0 \\ q^{d}-(q-1)^{d} & y=0\end{cases}
$$

Proof.

$$
\sum_{y \in \mathbb{F}_{q}} m_{y, z}^{d, q}=\#\left\{x_{1}+\cdots+x_{d}=z \mid x_{i} \in \mathbb{F}_{q}\right\}=H_{z}^{d}\left(\mathbb{F}_{q}\right)=q^{d-1}
$$

Likewise,

$$
\sum_{z \in \mathbb{F}_{q}} m_{y, z}^{d, q}=\#\left\{x_{1} \cdots x_{d}=z \mid x_{i} \in \mathbb{F}_{q}\right\}= \begin{cases}(q-1)^{d-1} & y \neq 0 \\ q^{d}-(q-1)^{d} & y=0\end{cases}
$$

because if $y \neq 0$ then every solution to $x_{1} \cdots x_{d}=y$ must have $x_{i} \neq 0$ for each i and for any choice of $x_{1}, \cdots, x_{d-1} \in \mathbb{F}_{q}^{\times}$there is a unique choice of x_{d} such that $x_{1} \cdots x_{d}=y$. Thus, in the case $y \neq 0$ there are exactly $(q-1)^{d-1}$ solutions. However, if $y=0$ then the condition $x_{1} \cdots x_{d}=0$ is equivalent to not all x_{i} being in \mathbb{F}_{q} and thus $\#\left(\mathbb{F}_{q}\right)^{d}-\#\left(\mathbb{F}_{q}^{\times}\right)^{d}=q^{d}-(q-1)^{d}$.

Proposition 9.6.

$$
\sum_{y \in \mathbb{F}_{q}^{\times}} m_{y, z}^{d, q}=\frac{1}{q}\left[(q-1)^{d}+\left(q \delta_{z}-1\right)(-1)^{d}\right]
$$

Proof. Since having some product $y \neq 0$ is equivalent to all $x_{i} \neq 0$ we have,

$$
\sum_{y \in \mathbb{F}_{q}^{\times}} m_{y, z}^{d, q}=\#\left\{x_{1}+\cdots x_{d}=z \mid x_{i} \neq 0\right\}=H_{z}^{d}\left(\mathbb{F}_{q}^{\times}\right)=\frac{1}{q}\left[(q-1)^{d}+\left(q \delta_{z}-1\right)(-1)^{d}\right]
$$

9.2 Relationships Between m-values

Lemma 9.7.

$$
\#\left(\mathbb{F}_{q}^{\times} /\left(\mathbb{F}_{q}^{\times}\right)^{n}\right)=\operatorname{gcd}(n, q-1)
$$

Proof. Let $w \in \mathbb{F}_{q}^{\times}$be a generator. The group, $\left.\mathbb{F}_{q}^{\times}\right)^{n}$ is generated by w^{n} which has order $\frac{q-1}{\operatorname{gcd}(n, q-1)}$. Therefore, $\#\left(\mathbb{F}_{q}^{\times}\right)^{n}=\frac{q-1}{\operatorname{gcd}(n, q-1)}$ and thus,

$$
\#\left(\mathbb{F}_{q}^{\times} /\left(\mathbb{F}_{q}^{\times}\right)^{n}\right)=\operatorname{gcd}(n, q-1)
$$

Proposition 9.8. Let $\pi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{q}^{\times} /\left(\mathbb{F}_{q}^{\times}\right)^{d}$ be the projection map. If $\pi(y)=\pi\left(y^{\prime}\right)$ then $m_{y, 0}^{d, q}=m_{y^{\prime}, 0}^{d, q}$.
Proof. Suppose that $\pi(y)=\pi\left(y^{\prime}\right)$. Then, $y^{\prime}=y \lambda^{d}$. Suppose that $x_{1}+\cdots+x_{d}=0$ and $x_{1} \cdots x_{d}=y$ is a solution for $m^{d, q} y, 0$. Then, consider the point $\lambda x_{1}, \cdots, \lambda x_{d}$. We have,

$$
\lambda x_{1}+\cdots+\lambda x_{d}=\lambda\left(x_{1}+\cdots+x_{d}\right)=0
$$

and

$$
\lambda x_{1} \cdots \lambda x_{d}=\lambda^{d}\left(x_{1} \cdots x_{d}\right)=\lambda^{d} y=y^{\prime}
$$

Therefore, $\lambda x_{1}, \cdots, \lambda x_{d}$ is a solution for $m_{y^{\prime}, 0}^{d, q}$. Furhtermore, $\lambda \neq 0$ so multiplication by λ is invertible.
Corollary 9.8.1. If $\operatorname{gcd}(d, q-1)=1$ then $m_{y, 0}^{d, q}=m_{y^{\prime}, 0}^{d, q}$ for all $y, y^{\prime} \in \mathbb{F}_{q}$.
Proposition 9.9. Let σ be an automorphism of \mathbb{F}_{q} then $m_{y, z}^{d, q}=m_{\sigma(y), \sigma(z)}^{d, q}$.
Proof. Since σ is an automorphism, it is an invertible map which preserves the structure of polynomial equations and therefore gives a bijection between $m_{y, z}^{d, q}$ and $m_{\sigma(y), \sigma(z)}^{d, q}$.

Proposition 9.10. If $y, z \neq 0$ then for any $\lambda \in \mathbb{F}_{q}^{\times}$we have $m_{y, z}^{d, q}=m_{\lambda^{d} y, \lambda z}^{d, q}$.
Proof. Multiplication by $\lambda \in \mathbb{F}_{q}^{\times}$is invertible and takes solutions for $m_{y, z}^{d, q}$ to solutions for $m_{\lambda^{d} y, \lambda z}^{d, q}$.
Corollary 9.10.1. If $q-1 \mid d$ then for $y, z, z^{\prime} \neq 0$ we have $m_{y, z}^{d, q}=m_{y, z^{\prime}}^{d, q}$.
Proof. We know that for any $\lambda \in \mathbb{F}_{q}^{\times}$we have $m_{y, z}^{d, q}=m_{\lambda^{d} y, \lambda z}^{d, q}$. However, $q-1 \mid d$ so d is an exponent of \mathbb{F}_{q}^{\times} so $\lambda^{d}=1$.

Lemma 9.11. Let $Z_{y}=\frac{1}{q-1} m_{y, 0}^{d, q}$. If $q-1 \mid d$ then Z_{y} is an integer.
Proof. Any solution $x_{1}+\cdots+x_{d}=0$ and $x_{1} \cdots x_{y}=y$ can be taken to another distinct solution $\lambda x_{1}+\cdots+$ $\lambda x_{d}=\lambda\left(x_{1}+\cdots+x_{d}\right)=0$ and $\lambda x_{1} \cdots \lambda x_{d}=\lambda^{d}\left(x_{1} \cdots x_{d}\right)=\lambda^{d} y=y$ by multiplication by λ. Since $y \neq 0$ we have that $x_{1}, \cdots, x_{d} \in \mathbb{F}_{q}^{\times}$for any such solution (since their product is nonzero) and thus multiplication by $\lambda \in \mathbb{F}_{q}^{\times}$acts freely on the set of solutions. Thus, each orbit has size $\#\left(\mathbb{F}_{q}^{\times}\right)=q-1$ but the orbits form a partition so $q-1 \mid m_{y, 0}^{d, q}$.
Lemma 9.12. If for $y, z, z^{\prime} \neq 0$ we have $m_{y, z}^{d, q}=m_{y, z^{\prime}}^{d, q}$ then,

$$
m_{y, z}^{d, q}=(q-1)^{d-2}-Z_{y}
$$

Proof. For $y, z \neq 0$ we have that,

$$
(q-1) m_{y, z}^{d, q}+m_{y, 0}^{d, q}=\sum_{z \in \mathbb{F}_{q}} m_{y, z}^{d, q}=(q-1)^{d-1}
$$

Thus,

$$
m_{y, z}^{d, q}=\frac{1}{q-1}\left[(q-1)^{d-1}-m_{y, 0}^{d, q}\right]
$$

Lemma 9.13. If $m_{y, 0}^{d, q}=m_{y^{\prime}, 0}^{d, q}$ for all $y, y^{\prime} \in \mathbb{F}_{q}^{\times}$then,

$$
m_{y, 0}^{d, q}=\frac{1}{q}\left[(q-1)^{d-1}+(-1)^{d}\right]
$$

for each $y \in \mathbb{F}_{q}^{\times}$.
Proof. We have that,

$$
(q-1) m_{y, 0}^{d, q}=\sum_{y \in \mathbb{F}_{q}} m_{y, 0}^{d, q}=\frac{1}{q}\left[(q-1)^{d}+(q-1)(-1)^{d}\right]
$$

Therefore,

$$
m_{y, 0}^{d, q}=\frac{1}{q}\left[(q-1)^{d-1}+(-1)^{d}\right]
$$

9.3 Powers of Gauss Sums

Theorem 9.14. Let $\chi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be a multiplicative character. If $q-1 \mid d$ then,

$$
g(\chi)^{d}=q \sum_{y \in \mathbb{F}_{q}^{\times}} Z_{y} \chi(y)-\delta_{\chi} \cdot\left[(q-1)^{d-1}+(-1)^{d}\right]
$$

Proof. Let $\phi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be a nontrivial additive character. Consider,

$$
\begin{aligned}
g(\chi)^{d} & =\left[\sum_{x \in \mathbb{F}_{q}} \chi(x) \psi(x)\right]^{d}=\sum_{x_{1} \in \mathbb{F}_{q}} \cdots \sum_{x_{d} \in \mathbb{F}_{q}} \chi\left(x_{1}\right) \cdots \chi\left(x_{d}\right) \psi\left(x_{1}\right) \cdots \psi\left(x_{d}\right) \\
& =\sum_{x_{1} \in \mathbb{F}_{q}} \cdots \sum_{x_{d} \in \mathbb{F}_{q}} \chi\left(x_{1} \cdots x_{d}\right) \psi\left(x_{1}+\cdots+x_{d}\right)=\sum_{y \in \mathbb{F}_{q}} \sum_{z \in \mathbb{F}_{q}} \sum_{x_{1}+\cdots+x_{d}=z} \chi(y) \psi(z) \\
& =\sum_{y \in \mathbb{F}_{q}} \chi(y) \sum_{z \in \mathbb{F}_{q}} m_{y, z}^{d, q} \psi(z)
\end{aligned}
$$

However, since $q-1 \mid d$, by Lemma 9.10 .1 we know that $m_{y, z}^{d, q}=m_{y, z^{\prime}}^{d, q}$ if $y, z, z^{\prime} \in \mathbb{F}_{q}^{\times}$. Therefore,

$$
\begin{aligned}
g(\chi)^{d} & =\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y) \sum_{z \in \mathbb{F}_{q}} m_{y, z}^{d, q} \psi(z)+\chi(0) \sum_{z \in \mathbb{F}_{q}} m_{0, z}^{d, q} \psi(z) \\
& =\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y)\left[m_{y, 0}^{d, q} \psi(0)+m_{y, z}^{d, q} \sum_{z \in \mathbb{F}_{q}^{\times}} \psi(z)\right]+\chi(0)\left[m_{0,0}^{d, q} \psi(0)+m_{0, z}^{d, q} \sum_{z \in \mathbb{F}_{q}} \psi(z)\right]
\end{aligned}
$$

Because ψ is a nontrivial character,

$$
\sum_{z \in \mathbb{F}_{q}} \psi(z)=0 \Longrightarrow \sum_{z \in \mathbb{F}_{q}^{\times}} \psi(z)=-1
$$

since $\psi(0)=1$. Therefore,

$$
g(\chi)^{d}=\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y)\left[m_{y, 0}^{d, q}-m_{y, z}^{d, q}\right]+\chi(0)\left[m_{0,0}^{d, q}-m_{0, z}^{d, q}\right]
$$

where z is an arbitrary nonzero element (since these numbers are independent of choice of $z \neq 0$). Furthermore, by Lemma 9.12 we know that,

$$
m_{y, 0}^{d, q}-m_{y, z}^{d, q}=m_{y, 0}^{d, q}+\frac{1}{q-1} m_{y, 0}^{d, q}-(q-1)^{d-2}=q Z_{y}-(q-1)^{d-2}
$$

Furthermore, by Lemma 9.4.1, $m_{0, z}^{d, q}-m_{0,0}^{d, q}=(-1)^{d}$. Putting these facts together,

$$
g(\chi)^{d}=\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y)\left[q Z_{y}-(q-1)^{d-2}\right]-\chi(0)(-1)^{d}
$$

Now we consider the case when χ is the trivial character χ_{0} and when $\chi \neq \chi_{0}$. When $\chi \neq \chi_{0}$ we know that $\chi(0)=0$ and that,

$$
\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y)=0
$$

Therefore we get,

$$
g(\chi)^{d}=q \sum_{y \in \mathbb{F}_{q}^{\times}} Z_{y} \chi(y)
$$

When χ is the trivial character, $\chi(y)=1$ for all $y \in \mathbb{F}_{q}$. Therefore,

$$
g(\chi)^{d}=q \sum_{y \in \mathbb{F}_{q}^{\times}} Z_{y} \chi(y)-\left[(q-1)^{d-1}+(-1)^{d}\right]
$$

Theorem 9.15. Let $\widehat{\mathbb{F}_{q}}$ be the character group of \mathbb{F}_{q} and $q-1 \mid d$. Then,

$$
Z_{y}=\frac{1}{q(q-1)}\left(\sum_{\chi \in \widehat{\mathbb{F}_{q}}} g(\chi)^{d} \bar{\chi}(y)+\left[(q-1)^{d-1}+(-1)^{d}\right]\right)
$$

Proof. By Theorem 9.15, we know that,

$$
q \sum_{y \in \mathbb{F}_{q}^{\times}} Z_{y} \chi(y)=g(\chi)^{d}+\delta_{\chi}\left[(q-1)^{d-1}+(-1)^{d}\right]
$$

We will make use the character orthogonality relation,

$$
\sum_{\chi \in \widehat{\mathbb{F}_{q}}} \chi(x) \bar{\chi}(y)= \begin{cases}(q-1) & x=y \\ 0 & x \neq y\end{cases}
$$

for $x, y \in \mathbb{F}_{q}^{\times}$. Using this relation,

$$
\sum_{\chi \in \widehat{\mathbb{F}_{q}}}\left(g(\chi)^{d}+\delta_{\chi}\left[(q-1)^{d-1}+(-1)^{d}\right]\right) \bar{\chi}(y)=q \sum_{\chi \in \widehat{\mathbb{F}_{q}}} \sum_{z \in \mathbb{F}_{q}^{\times}} Z_{z} \chi(z) \bar{\chi}(y)=q \sum_{z \in \mathbb{F}_{q}^{\times}} Z_{z}(q-1) \delta_{y-z}=q(q-1) Z_{z}
$$

Furthermore, for $\chi=\chi_{0}$ we have $\bar{\chi}(y)=1$. Thus,

$$
q(q-1) Z_{z}=\sum_{\chi \in \widehat{\mathbb{F}_{q}}} g(\chi)^{d} \bar{\chi}(y)+\left[(q-1)^{d-1}+(-1)^{d}\right]
$$

9.4 Special Cases of Sum-Product Varieties

Definition 9.16. The sum-product variety, $V_{\lambda}^{d, q}$ is defined by the equation $x_{1}+\cdots+x_{d}=\lambda x_{1} \cdots x_{d}$ over \mathbb{F}_{q}. Clearly, the number of points on a sum-product variety is given by,

$$
\#\left(V_{\lambda}^{d, q}\right)=\sum_{y \in \mathbb{F}_{q}} m_{y, \lambda y}^{d, q}
$$

Proposition 9.17. Suppose that $m_{y, z}^{d, q}=m_{y, z^{\prime}}^{d, q}$ for all $y, z, z^{\prime} \in \mathbb{F}_{q}^{\times}$then,

$$
\#\left(V_{\lambda}^{d, q}\right)=q^{d-1}-(-1)^{d}
$$

Proof. We know that,

$$
\begin{aligned}
\#\left(V_{\lambda}^{d, q}\right) & =\sum_{y \in \mathbb{F}_{q}} m_{y, \lambda y}^{d, q}=m_{0,0}^{d, q}+\sum_{y \in \mathbb{F}_{q}^{\times}} m_{y, \lambda y}^{d, q}=m_{0,0}^{d, q}+\sum_{y \in \mathbb{F}_{q}^{\times}} m_{y, 1}^{d, q}=\sum_{y \in \mathbb{F}_{q}} m_{y, 1}^{d, q}+\left[m_{0,0}^{d, q}-m_{0,1}^{d, q}\right] \\
& =q^{d-1}-(-1)^{d}
\end{aligned}
$$

Corollary 9.17.1. If $q-1 \mid d$ then,

$$
\#\left(V_{\lambda}^{d, q}\right)=q^{d-1}-(-1)^{d}
$$

Proposition 9.18. The number of points on a sum-product variety is determined entirely by $m_{\lambda^{-1}, 0}^{d, q}$ via,

$$
\#\left(V_{\lambda}^{d, q}\right)=\#\left(V_{\lambda}^{d, q}\right)=q^{d-1}-(q-1)^{d-2}+q m_{\lambda^{-1}, 0}^{d, q}
$$

Proof. Choose any $x_{1}, \cdots, x_{d-1} \in \mathbb{F}_{q}$. Denote $S=x_{1}+\cdots+x_{d-1}$ and $P=x_{1} \cdots x_{d-1}$. Then finding a point on the variety is equivalent to solving,

$$
S+x_{d}=\lambda P x_{d} \Longleftrightarrow x_{d}=\frac{S}{\lambda P-1}
$$

when $P \neq \lambda^{-1}$. Therefore, for any choice of $x_{1}, \cdots, x_{d-1} \in \mathbb{F}_{q}$ there is a unique point on the variety when $P \neq \lambda^{-1}$. When $P=\lambda^{-1}$ there are no solutions for $S \neq 0$ and any x_{d} gives a point on the variety if $S=0$. There are $q^{d-1}-(q-1)^{d-2}$ choices for $x_{1}, \cdots, x_{d-1} \in \mathbb{F}_{q}$ which do not have $P=\lambda^{-1}$ since to get $P=\lambda^{-1}$ we can take the first $d-2$ to be arbitrary elements of \mathbb{F}_{q}^{\times}and then there is a unique $x_{d-1} \in \mathbb{F}_{q}^{\times}$such that $x_{1} \cdots x_{d-1}=\lambda^{-1}$. Thus, the total number of solutions is,

$$
\#\left(V_{\lambda}^{d, q}\right)=q^{d-1}-(q-1)^{d-2}+q m_{\lambda^{-1}, 0}^{d, q}
$$

Proposition 9.19. If $m_{y, 0}^{d, q}=m_{y^{\prime}, 0}^{d, q}$ for all $y, y^{\prime} \in \mathbb{F}_{q}^{\times}$then,

$$
\#\left(V_{\lambda}^{d, q}\right)=q^{d-1}+(q-2)(q-1)^{d-2}+(-1)^{d}
$$

for each $\lambda \in \mathbb{F}_{q}^{\times}$.
Proof. By Lemma 9.13 we know that,

$$
m_{\lambda^{-1}, 0}^{d, q}=\frac{1}{q}\left[(q-1)^{d-1}+(-1)^{d}\right]
$$

Therefore, by Proposition 9.4,

$$
\#\left(V_{\lambda}^{d, q}\right)=q^{d-1}-(q-1)^{d-2}+(q-1)^{d-1}+(-1)^{d}=q^{d-1}+(q-2)(q-1)^{d-2}+(-1)^{d}
$$

Corollary 9.19.1. If $\operatorname{gcd}(d, q-1)=1$ then for each $\lambda \in \mathbb{F}_{q}^{\times}$,

$$
\#\left(V_{\lambda}^{d, q}\right)=q^{d-1}+(q-2)(q-1)^{d-2}+(-1)^{d}
$$

Theorem 9.20. Let $q=p^{r}$ and $d=p^{s}$ then, for each $\lambda \in \mathbb{F}_{q}^{\times}$, the zeta function of the variety, $V_{\lambda}^{d, q}$ equals,

$$
\zeta_{V_{\lambda}^{d, q}}=\frac{1}{1-q^{d-1} t}\left[\frac{1}{1-t}\right]^{(-1)^{d}} \prod_{i=0}^{d}\left[\frac{\left(1-q^{i} t\right)^{2}}{1-q^{i+1} t}\right]^{\binom{d}{i}(-1)^{d-i}}
$$

and therefore, $V_{\lambda}^{d, q}$ is supersingular.
Proof.

$$
\zeta_{V_{\lambda}^{d, q}}=\exp \left(\sum_{k \geq 1} \frac{\#\left(V_{\lambda}^{d, q^{k}}\right)}{k} t^{k}\right)
$$

However, $\left(d, q^{k}-1\right)=\left(p^{s}, p^{r k}-1\right)=1$ for all k. Therefore, by Corollary 9.19.1,

$$
\#\left(V_{\lambda}^{d, q^{k}}\right)=q^{(d-1) k}+\left(q^{k}-2\right)\left(q^{k}-1\right)^{d-2}+(-1)^{d}=q^{k(d-1)}+(-1)^{d}+\left(q^{k}-2\right) \sum_{i=0}^{d}\binom{d}{i}(-1)^{d-i} q^{k i}
$$

Thus,

$$
\begin{aligned}
\zeta_{V_{\lambda}^{d, q}} & =\exp \left(\sum_{k \geq 1} \frac{q^{k(d-1)}}{k} t^{k}+\frac{(-1)^{d}}{k} t^{k}+\left(q^{k}-2\right) \sum_{i=0}^{d}\left[\binom{d}{i}(-1)^{d-i} \sum_{k \geq 1} \frac{q^{k i}}{k} t^{k}\right]\right) \\
& =\exp \left(\sum_{k \geq 1} \frac{q^{k(d-1)}}{k} t^{k}+\frac{(-1)^{d}}{k} t^{k}+\sum_{i=0}^{d}\left[\binom{d}{i}(-1)^{d-i} \sum_{k \geq 1} \frac{q^{k(i+1)}}{k} t^{k}\right]-2 \sum_{i=0}^{d}\left[\binom{d}{i}(-1)^{d-i} \sum_{k \geq 1} \frac{q^{k i}}{k} t^{k}\right]\right) \\
& =\exp \left(-\log \left[1-q^{d-1} t\right]-(-1)^{d} \log [1-t]-\sum_{i=0}^{d}\left[\binom{d}{i}(-1)^{d-i} \log \left[1-q^{i+1}\right]\right]+2 \sum_{i=0}^{d}\left[\binom{d}{i}(-1)^{d-i} \log \left[1-q^{i}\right]\right]\right) \\
& =\frac{1}{1-q^{d-1} t}\left[\frac{1}{1-t}\right]^{(-1)^{d}} \prod_{i=0}^{d}\left[\frac{\left(1-q^{i} t\right)^{2}}{1-q^{i+1} t}\right]^{\binom{d}{i}(-1)^{d-i}}
\end{aligned}
$$

Lemma 9.21. Let $w \in \mathbb{F}_{q}^{\times}$be a generator. Then, $a=w^{r}$ is a $n^{\text {th }}$ power if and only if $\operatorname{gcd}(n q-1) \mid r$.
Proof. Suppose that $a=b^{n}$ where $b=w^{x}$. Then, $w^{r}=w^{n x}$ which is equivalent to $n x \equiv r \bmod (q-1)$. This equation has solutions if and only if $\operatorname{gcd}(n, q-1) \mid r$.

10 Relationships Between Diagonal Varieties

Lemma 10.1. Let $\varphi: X \rightarrow Y$ be a surjective morphism then the induced map on ℓ-adic cohomology $\varphi^{*}: H^{*}\left(Y, \mathbb{Q}_{\ell}\right) \rightarrow H^{*}\left(X, \mathbb{Q}_{\ell}\right)$ is injective.

Proof. See Kleiman, Algebraic Cycles and the Weil Conjectures, Proposition 1.2.4. Further, use the fact that ℓ-adic cohomology is a Weil cohomlogy theory.

Proposition 10.2. We say a scheme X over \mathbb{F}_{q} is supersingular if and only if the frobenius map $F_{X}: X \rightarrow X$ induces a map $F_{X}^{*}: H^{i}\left(X, \mathbb{Q}_{\ell}\right) \rightarrow H^{i}\left(X, \mathbb{Q}_{\ell}\right)$ on ℓ-adic cohomology with all eigenvalues of the form $\omega q^{\frac{i}{2}}$ where ω is a root of unity.

Theorem 10.3. Let $\varphi: X \rightarrow Y$ be a surjective morphism then X being supersingular implies that Y is supersingular.

Proof. The induced map $\varphi^{*}: H^{i}\left(Y, \mathbb{Q}_{\ell}\right) \rightarrow H^{i}\left(X, \mathbb{Q}_{\ell}\right)$ is injective by Proposition 10.2 and commutes with the Frobenuius maps,

Suppose that X is supersingular then every eigenvalue of $F *_{X}: H^{i}\left(X, \mathbb{Q}_{\ell}\right) \rightarrow H^{i}\left(X, \mathbb{Q}_{\ell}\right)$ has the form $\lambda=\omega q^{\frac{i}{2}}$ where ω is a root of unity. Suppose that $v \neq 0$ is an eigenvector of F_{Y}^{*} such that $F_{Y}^{*}=\lambda v$. By commutativity of the diagram,

$$
\varphi^{*} \circ F_{Y}^{*}(v)=F_{X}^{*}\left(\varphi^{*}(v)\right)
$$

Furthermore, since φ^{*} is a linear map,

$$
\varphi^{*} \circ F_{Y}^{*}(v)=\varphi^{*}(\lambda v)=\lambda \varphi^{*}(v)
$$

and therefore,

$$
F_{X}^{*}\left(\varphi^{*}(v)\right)=\lambda \varphi^{*}(v)
$$

Since φ^{*} is injective and $v \neq 0$ we know that $\varphi^{*}(v) \neq 0$ so $\varphi^{*}(v)$ is an eigenvector of F_{X}^{*} with eigenvalue λ. Therefore, since X is supersingular, $\lambda=\omega q^{\frac{i}{2}}$ with ω a root of unity. Since λ is an abitrary eigenvalue of F_{Y}^{*} we have that Y is supersingular.

Definition 10.4. Let X and Y be diagonal varieties of dimension $r-1$ over the field k, defined respectively by the equations,

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0 \text { and } b_{0} x_{0}^{m_{0}}+\cdots+b_{r} x_{r}^{n_{r}}=0
$$

Then we say that $X \mid Y$ iff $n_{i} \mid m_{i}$ for each $0 \leq i \leq r$.
Lemma 10.5. If X and Y are diagonal varieties of dimension $r-1$ over an algebraically closed field k and $X \mid Y$ then there exists a surjective morphism, $\varphi: Y \rightarrow X$.

Proof. Define the map $\varphi: Y \rightarrow X$ via,

$$
\left(x_{0}, \ldots, x_{r}\right) \mapsto\left(x_{0}^{\frac{m_{0}}{n_{0}}}, \ldots, x_{r}^{\frac{m_{r}}{n_{r}}}\right)
$$

This map is well-defined because if the point $\left(x_{0}, \ldots, x_{r}\right)$ satisfies,

$$
x_{0}^{m_{0}}+\cdots+x_{r}^{m_{r}}=0
$$

Then the point $\left(y_{0}, \ldots, y_{r}\right)=\left(x_{0}^{\frac{m_{0}}{n_{0}}}, \ldots, x_{r}^{\frac{m_{r}}{n_{r}}}\right)$ satisfies the equation,

$$
y_{0}^{n_{0}}+\cdots+y_{r}^{n_{r}}
$$

Furthermore, φ is surjective because k is algebraically closed and thus each $y_{i} \in k$ is an $\left(\frac{m_{i}}{n_{i}}\right)^{\text {th }}$ power.
Remark. Theorem 3.5 is a special case of this result in which the map φ has additional properties due to the characteristic of k.

Corollary 10.5.1. Suppose $X \mid Y$. If Y is supersingular then X is supersingular.
Proof. This follows immediately from Lemma 10.3 and Lemma 10.5. However, we also give an elementary proof. Take q to be a power of p such that $q \equiv 1$ modulo the LCM for X and Y. Since $X \mid Y$ each $\alpha \in A_{X, q}$ for X satisfies the correct divisibility relations for Y. Thus, $A_{X, q} \subset A_{Y, q}$. Therefore, if Y is supersingular then each $\alpha \in A_{Y, q}$ gives a product of gauss sums which is a root of unity. Since $A_{X, q} \subset A_{Y, q}$ the same holds for X so X is supersingular.

Corollary 10.5.2. Let X be a diagonal variety over an algebraically closed field k defined by the equation,

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

Define the $L C M$ extension X_{ℓ} and $G C D$ reduction X_{g} of X by,

$$
X_{\ell}=F_{r}^{\operatorname{lcm}\left(n_{i}\right)} \text { and } X_{g}=F_{r}^{\operatorname{gcd}\left(n_{i}\right)}
$$

respectively. Then there exist surjective maps,

$$
X_{\ell} \xrightarrow{\varphi_{\ell}} X \xrightarrow{\varphi_{g}} X_{g}
$$

Corollary 10.5.3. If X_{ℓ} is supersingular then X is supersingular. If X_{g} is not supersingular then X is not supersingular.

Theorem 10.6. Let X be a diagonal variety. Then X is supersigular over \mathbb{F}_{p} if there exists $v \in \mathbb{Z}$ such that $p^{v} \equiv-1 \bmod \operatorname{lcm}\left(n_{i}\right)$ and X is not supersingular if for all $v \in \mathbb{Z}$ we have $p^{v} \not \equiv-1 \bmod \operatorname{gcd}\left(n_{i}\right)$.

Proof. This follows from Shioda's theorem via Corollary 10.5.3.

11 Newton Polygons

Proposition 11.1. The set of slopes that appear in the Newton polygon is determined by

$$
\frac{1}{(p-1) f} \sum_{i=0}^{3} s\left(\frac{(q-1) r_{i}}{m}\right)-1
$$

where $\sum \frac{r_{i}}{m} \in \mathbb{Z}, i$. e., the set of $\frac{r_{i}}{m}$ is in the set of all possible α.
Proof. See Koblitz's paper p-adic variation of the zeta function over the families of varieties defined over finite fields.

Proposition 11.2. When $f=1$, the Newton Polygon of the Fermat variety $F_{p, r}^{n}$ is of the form

$$
(0,0),(0, a),\left(b_{2}-a, b_{2}-2 a\right),\left(b_{2}, b_{2}\right)
$$

where $a=\binom{m-1}{3}$, and b_{2} is the second betti number.
Proof. Since $f=1$, we know that

$$
\sum_{i=0}^{3} s\left(\frac{(q-1) r_{i}}{m}\right)=\sum_{i=0}^{3}\left\{\frac{r_{i}}{m}\right\}
$$

But $m \mid r_{0}+r_{1}+r_{2}+r_{3}$, so the only possible value for $\sum_{i=0}^{3}\left\{\frac{r_{i}}{m}\right\}$ is $1,2,3$, and these corresponds to slope $0,1,2$.

To count the length of x-axis where the slope is 0 , we need to find the number of solution to the equation

$$
r_{0}+r_{1}+r_{2}+r_{3}=m
$$

which is $\binom{m-1}{3}$. By duality of the cohomology, this length is equal to the length of the last segment, i. e., the segment with slope 2 .

12 Surfaces of the form $x^{p}+y^{q}+z^{p s}+w^{q s}$

Theorem 12.1. Let p, q, w be primes such that $p, q, w \equiv 1 \bmod s$ for some s and let X be the variety defined by,

$$
x_{0}^{p}+x_{1}^{p s}+x_{2}^{q}+x_{3}^{q s}=0
$$

over \mathbb{F}_{w}. If w is a primitive root modulo p and q then X is supersingular.
Proof. By Theorem 6.14, we need only check that for each $\alpha=\left(e_{0} / m, \ldots, e_{3} / m\right) \in A(X)$ that,

$$
S_{\mu}\left(e_{0}, e_{1}, e_{2}, e_{3}\right)=\sum_{i=0}^{3} \sum_{j=0}^{f-1}\left\{\frac{\mu e_{i} w^{j}}{m}\right\}=2 f
$$

where $m=p q s$ and $f=\operatorname{ord}_{p q s}(w)$. However, we also know that α can be written as a tuple, $\left(a_{0}, \ldots, a_{3}\right)$ such that,

$$
\frac{a_{0}}{p}+\frac{a_{1}}{p s}+\frac{a_{2}}{q}+\frac{a_{3}}{q s}=\frac{s a_{0}+a_{1}}{p s}+\frac{s a_{2}+a_{3}}{q s}=\frac{q\left(s a_{0}+a_{1}\right)+p\left(s a_{2}+a_{3}\right)}{p q s} \in \mathbb{Z}
$$

Since p and q are coprime, we must have,

$$
p \mid s a_{0}+a_{1} \quad \text { and } \quad q \mid s a_{2}+a_{3}
$$

Thus, let, $s a_{0}+a_{1}=p n_{p}$ and $s a_{2}+a_{3}=q n_{q}$. This reduces the above condition to,

$$
\frac{n_{p}}{s}+\frac{n_{q}}{s} \in \mathbb{Z} \Longleftrightarrow n_{p}+n_{q} \equiv 0 \quad \bmod s
$$

Now, using Lemma 8.8,

$$
\begin{aligned}
S_{\mu}\left(e_{0}, e_{1}, e_{2}, e_{3}\right) & =S_{\mu}\left(e_{0}, e_{1}\right)+S_{\mu}\left(e_{2}, e_{3}\right) \\
& =N_{\mu}\left(e_{0}, e_{1}\right)+N_{\mu}\left(e_{2}, e_{3}\right)+\sum_{j=0}^{f-1}\left[\left\{\frac{\mu\left(e_{0}+e_{1}\right) w^{j}}{m}\right\}+\left\{\frac{\mu\left(e_{2}+e_{3}\right) w^{j}}{m}\right\}\right]
\end{aligned}
$$

However, $e_{0}+e_{1}=q\left(s a_{0}+a_{1}\right)=p q n_{p}$ and $e_{2}+e_{3}=p\left(s a_{2}+a_{3}\right)=p q n_{q}$ and thus,

$$
\sum_{j=0}^{f-1}\left[\left\{\frac{\mu\left(e_{0}+e_{1}\right) w^{j}}{m}\right\}+\left\{\frac{\mu\left(e_{2}+e_{3}\right) w^{j}}{m}\right\}\right]=\sum_{j=0}^{f-1}\left[\left\{\frac{\mu n_{p} w^{j}}{s}\right\}+\left\{\frac{\mu n_{q} w^{j}}{s}\right\}\right]=\sum_{j=0}^{f-1} 1=f
$$

since $\mu w^{j}\left(n_{p}+n_{q}\right) \equiv 0 \bmod s$. We need not worry about the case $n_{p} \equiv n_{q} \equiv 0 \bmod s$ because in that case $m \mid e_{0}+e_{1}$ and $m \mid e_{2}+e_{3}$ so $S_{\mu}\left(e_{0}, e_{1}\right)=S_{\mu}\left(e_{2}, e_{3}\right)=f$ which is the condition we need.

It remains to show that,

$$
N_{\mu}\left(e_{0}, e_{1}\right)+N_{\mu}\left(e_{2}, e_{3}\right)=f \Longrightarrow S_{\mu}\left(e_{0}, e_{1}, e_{2}, e_{3}\right)=2 f
$$

Consider the number, $N_{\mu}\left(e_{0}, e_{1}\right)$ which counts all $0 \leq j<f$ such that,

$$
\left\{\frac{\mu n_{p} w^{j}}{s}\right\}<\left\{\frac{\mu a_{0} w^{j}}{p}\right\}
$$

However, $w \equiv 1 \bmod s$ and thus,

$$
\left\{\frac{\mu n_{p} w^{j}}{s}\right\}=\left\{\frac{\mu n_{p}}{s}\right\}=\frac{\left[\mu n_{p}\right]_{s}}{s}
$$

Furthermore, w is a primitve root modulo p so the numbers $\mu a_{0} w^{j}$ give a complete set of residues modulo p. Because $p-1=\operatorname{ord}_{p}(w) \mid \operatorname{ord}_{p q s}(w)=f$ we can write $f=u_{p}(p-1)$ and similarly $f=u_{q}(q-1)$. Therefore,

$$
N_{\mu}\left(e_{0}, e_{1}\right)=u_{p}\left[\#\left\{0 \leq i<p-1 \left\lvert\, \frac{\left[\mu n_{p}\right]_{s}}{s}<\frac{i}{p}\right.\right\}\right]=u_{p}\left(p-1-\left\lfloor\frac{p\left[\mu n_{p}\right]_{s}}{s}\right\rfloor\right)
$$

However, $p \equiv 1 \bmod s$ so $p=s k_{p}+1$ and thus because $0<\left[\mu n_{p}\right]_{s}<s$ we have,

$$
\left\lfloor k_{p}\left[\mu n_{p}\right]_{s}+\frac{\left[\mu n_{p}\right]_{s}}{s}\right\rfloor=k_{p}\left[\mu n_{p}\right]_{s}
$$

Finally,

$$
N_{\mu}\left(e_{0}, e_{1}\right)=f-u_{p} k_{p}\left[\mu n_{p}\right]_{s}=f-u_{p} \frac{p-1}{s}\left[\mu n_{p}\right]_{s}=f\left(1-\frac{\left[\mu n_{p}\right]_{s}}{s}\right)
$$

and identical argument gives,

$$
N_{\mu}\left(e_{2}, e_{3}\right)=f\left(1-\frac{\left[\mu n_{q}\right]_{s}}{s}\right)
$$

and thus,

$$
N_{\mu}\left(e_{0}, e_{1}\right)+N_{\mu}\left(e_{2}, e_{3}\right)=f\left(2-\frac{\left[\mu n_{p}\right]_{s}+\left[\mu n_{q}\right]_{s}}{s}\right)=f
$$

because $\left[\mu n_{p}\right]_{s}+\left[\mu n_{q}\right]_{s}=s$.
Theorem 12.2. Let X be the variety defined by,

$$
a_{0} x_{0}^{n_{0}}+\cdots+a_{r} x_{r}^{n_{r}}=0
$$

and let $n=\operatorname{lcm} n_{i}$. Now define the polynomial,

$$
B_{X}(x)=\left[\prod_{i=0}^{r} \frac{x^{2 n}-x^{2 w_{i}}}{x^{2 w_{i}}-1}-\prod_{i=0}^{r} \frac{x^{n(r+1)}-x^{w_{i}(r+1)}}{x^{w_{i}(r+1)}-1}\right]
$$

Suppose that $p \equiv 1 \bmod n$ then the total degree of X minus the picard number of X is given by,

$$
P^{C}(X)=\sum_{i=1}^{n(r+1)} B_{X}\left(\zeta_{n(r+1)}^{i}\right)
$$

In particular, X is supersingular iff $P^{C}(X)=0$.
Proof. When $p \equiv 1 \bmod n$ then $f=1$ so we know that a given product of Gaussian sums applied for $\alpha \in A_{n, p}$ is a root of unity if and only if,

$$
\sum_{i=0}^{r}\left\{\frac{\mu e_{0}}{n}\right\}=\frac{r+1}{2}
$$

for each $\mu \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. (WIP)

13 Rationality

Theorem 13.1. The variety X defined by equation

$$
x^{q}+y^{q}+z^{p}+w^{p}=0
$$

is rational when $\operatorname{gcd}(p, q)=1$.
Proof. This variety is in the weighted projected space $\mathbb{P}(p, p, q, q)$. We want to define a map f from $\mathbb{P}(p, p, q, q)$ to $\mathbb{P} \times \mathbb{P}$ by

$$
\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(\left(x_{0}: x_{1}\right),\left(x_{2}: x_{3}\right)\right)
$$

and we consider the locus $D_{+}\left(x_{0} x_{2}\right) \subset \mathbb{P}(p, p, q, q)$ and its image $D_{+}\left(x_{0}\right) \times D_{+}\left(x_{2}\right) \cong \mathbb{A} \times \mathbb{A} \subset \mathbb{P} \times \mathbb{P}$ under f.

We know that

$$
D_{+}\left(x_{0} x_{2}\right)=\operatorname{Spec} R \quad \text { where } \quad R=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left[\frac{1}{x_{0} x_{2}}\right]_{0}
$$

Define the change of variable

$$
x_{1,0}=\frac{x_{1}}{x_{0}}, \quad x_{3,2}=\frac{x_{3}}{x_{2}}, \quad x_{2,0}=\frac{x_{2}^{p}}{x_{0}^{q}},
$$

we content that $D_{+}\left(x_{0} x_{2}\right)=\operatorname{Spec}\left(k\left[x_{1,0}, x_{3,2}, x_{2,0}, x_{2,0}^{-1}\right]\right)$, as proved in lemma.
On the other hand, we can write $D_{+}\left(x_{0}\right) \times D_{+}\left(x_{2}\right)=\operatorname{Spec}\left(k[s] \otimes_{k} k[t]\right)=\mathbb{A} \times \mathbb{A}$ by let

$$
s=\frac{x_{1}}{x_{0}}, \quad t=\frac{x_{3}}{x_{2}} .
$$

Then we can define the ring map

$$
f_{*}: k[s] \otimes_{k} k[t] \rightarrow R
$$

by

$$
s \mapsto x_{1,0}, \quad t \mapsto x_{3,2} .
$$

Now consider the variety $X=V\left(x_{0}^{q}+x_{1}^{q}+x_{2}^{p}+x_{3}^{p}\right)=V(I)$ in the affine patch $D_{+}\left(x_{0} x_{2}\right)$. The defining equation of X after change of variable can be written as

$$
f=1+x_{1,0}^{q}+x_{2,0}+x_{3,2}^{p} x_{2,0}=x_{2,0}\left(1+x_{3,2}^{p}\right)+\left(1+x_{1,0}^{q}\right)
$$

Thus it is clear that

$$
k\left[x_{1,0}, x_{3,2}, x_{2,0}, x_{2,0}^{-1}\right] /\left(x_{2,0}\left(1+x_{3,2}^{p}\right)+\left(1+x_{1,0}^{q}\right)\right) \cong \operatorname{Frac}(R / I)
$$

Notice that $\overline{f^{*}}: k[s] \otimes_{k} k[t] \rightarrow \operatorname{Frac}(R / I)$ is surjective because we can write $x_{2,0}$ and $x_{2,0}^{-1}$ as a rational function in term of $x_{1,0}$ and $x_{3,2}$. Furthermore, it is easy to see that f^{*} is injective. Thus, f^{*} is a bijective rational map. For the inverse map of f^{*}, we map

$$
x_{1,0} \mapsto s, \quad x_{3,2} \mapsto t .
$$

We thus show that X is birationally equivalent to $\mathbb{P} \times \mathbb{P}$.
Lemma 13.2. Let $R=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ be a weighted ring with weight (p, p, q, q) and $\operatorname{gcd}(p, q)=1$. Then

$$
R_{+}=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left[\frac{1}{x_{0} x_{2}}\right]_{0} \cong k\left[x_{1,0}, x_{3,2}, x_{2,0}, x_{2,0}^{-1}\right]
$$

where

$$
x_{1,0}=\frac{x_{1}}{x_{0}}, x_{3,2}=\frac{x_{3}}{x_{2}}, x_{2,0}=\frac{x_{2}^{p}}{x_{0}^{q}} .
$$

Proof. We proceed by showing that if

$$
m=\frac{x_{0}^{a_{0}} x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}}}{x_{0}^{b_{0}} x_{2}^{b_{2}}}
$$

for $a_{i}, b_{j}>0$ with $i=0,1,2,3$ and $j=0,1$, and m has degree 0 , then m can be written as a product of $x_{1,0}, x_{3,2}, x_{2,0}$, or $x_{0,2}$.

If $a_{0}>b_{0}$ and $a_{2}>b_{2}$, then it is impossible for m to have degree 0 .
If $a_{0}>b_{0}$ and $a_{2}<b_{2}$, then let $b_{2}-a_{2}=c_{2}$ and $a_{0}-b_{0}=c_{0}$. For m to have degree 0 , we need

$$
p c_{0}+p a_{1}+q a_{3}=q c_{2} .
$$

Since $\operatorname{gcd}(p, q)=1$, it must be the case that $q \mid\left(c_{0}+a_{1}\right)$. Write $c_{0}+a_{1}=q k$ for some $k \in \mathbb{Z}$. Our equation now become

$$
p k+a_{3}=c_{2}
$$

Thus we can write m as

$$
m=\left(\frac{x_{0}^{a_{1}} x_{0}^{c_{0}} x_{1}^{a_{1}} x_{3}^{a_{3}}}{x_{0}^{a_{1}} x_{2}^{p k}}\right)\left(\frac{x_{3}}{x_{2}}\right)^{a_{3}}=x_{1,0}^{a_{1}} x_{3,2}^{a_{3}} x_{0,2}^{k}
$$

If $a_{0}<b_{0}$ and $a_{2}<b_{2}$, let $c_{0}=b_{0}-a_{0}$ and $c_{2}=b_{2}-a_{2}$. Then we have the equation

$$
p a_{1}+q a_{3}=p c_{0}+q c_{2}
$$

with $a_{1}, a_{3}, c_{0}, c_{2}>0$.
Since $\operatorname{gcd}(p, q)=1$, we can write $d_{1} p+d_{2} q=1$, and $\left|d_{1}\right|<q$ and $\left|d_{2}\right|<p$. Notice that $d_{1} d_{2}<0$.
Moreover, any other such equation can be written as $\left(d_{1}+q r\right) p+\left(d_{2}-p r\right) q=1$ for $r \in \mathbb{Z}$. Without loss of generality, let $d_{1}>0$ and $d_{2}<0$. Then

$$
\begin{aligned}
\left(d_{1}+q r\right)\left(d_{2}-p r\right) & =d_{1} d_{2}-p r d_{1}+r\left(1-d_{1} p\right)-p q r^{2} \\
& =d_{1} d_{2}+r-2 d_{1} p r-p q r^{2}
\end{aligned}
$$

If $r>0$, the only positive term is r thus we know $\left(d_{1}+q r\right)\left(d_{2}-p r\right)<0$.
If $r<0$, we have $-2 d_{1} p r>0$, but $2 d_{1} p<p q|r|$ since $\left|d_{1}\right|<q$. Thus, it is impossible for both of the coefficient to be positive at the same time. However, $a_{1}, a_{3}, c_{0}, c_{2}>0$. Therefore, it is also impossible for m in this case to have degree 0 .

14 Surfaces of the Form $x^{a}+y^{b}+z^{c}+w^{a b c}$

Lemma 14.1. (From Shioda's On Fermat Varieties) Let p be a prime, n be an integer not divisible by p, and $f=\operatorname{ord}_{n}(p)$. Suppose that for all μ relatively prime to n :

$$
\sum_{i=0}^{f-1}\left\{\frac{\mu p^{i}}{n}\right\}=\frac{f}{2}
$$

Then there does not exist a primitive character χ modulo n such that $\chi(-1)=-1$ and $\chi(p)=1$.
Proof. Suppose there does exist such a character. As χ is primitive with $\chi(-1)=-1$,

$$
0 \neq L(1, \chi)=\frac{i \pi g(\chi)}{n^{2}} \sum_{k=1}^{n} \bar{\chi}(k) k
$$

As $g(\chi)$ is non-zero we must have:

$$
\sum_{k=1}^{n} \bar{\chi}(k) k \neq 0
$$

Now let G be $(\mathbb{Z} / a b c \mathbb{Z})^{\times}$and let H be the subgroup of G generated by p. As χ is trivial on H :

$$
\sum_{k=1}^{n} \bar{\chi}(k) k=\sum_{\mu \in G / H} \chi(\mu) \sum_{k \in \mu H} k
$$

Now we have that:

$$
\frac{f}{2}=\sum_{i=0}^{f-1}\left\{\frac{\mu p^{i}}{n}\right\}=\sum_{k \in \mu H} \frac{k}{n}
$$

Thus

$$
\sum_{k=1}^{n} \bar{\chi}(k) k=\frac{n f}{2} \sum_{\mu \in G / H} \chi(\mu)
$$

Note that χ is a nontrivial character on G / H. Thus

$$
\sum_{\mu \in G / H} \chi(\mu)=0
$$

and so we have a contradiction.

Lemma 14.2. Let $p, a_{1}, a_{2}, \ldots, a_{r}$ be distinct primes. Suppose $f=\operatorname{ord}_{a b c}(p)$ and $f_{i}=\operatorname{ord}_{a_{i}}(p)$. There exists a primitive character modulo $a_{1} a_{2} \cdots a_{r}$ such that $\chi(-1)=-1$ and $\chi(p)=1$ if and only if there exist integers $0<\alpha_{i}<a_{i}-1$ for each i such that

$$
\sum_{i=1}^{r} \frac{\alpha_{r}}{f_{r}} \in \mathbb{Z}
$$

and $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}$ is odd.
Proof. Let $A=a_{1} a_{2} \cdots a_{r}$ and $\chi:(\mathbb{Z} / A \mathbb{Z})^{\times} \rightarrow S^{1}$ be a character. As:

$$
(\mathbb{Z} / A \mathbb{Z})^{\times}=\prod_{i=1}^{r}\left(\mathbb{Z} / a_{i} \mathbb{Z}\right)^{\times}
$$

There exists characters $\chi_{i}:\left(\mathbb{Z} / a_{i} \mathbb{Z}\right)^{\times} \rightarrow S^{1}$ such that

$$
\chi(j)=\chi_{1}(j) \chi_{2}(j) \cdots \chi_{r}(j)
$$

As the a_{i} are prime, there exists generators g_{i} modulo a_{i} for each i such that:

$$
g_{i}^{\frac{a_{i}-1}{f_{i}}} \equiv p \quad\left(\bmod a_{i}\right)
$$

Now there exists α_{i} for each i such that:

$$
\chi\left(g_{i}\right)=\exp \left(\frac{2 \pi \alpha_{i}}{a_{i}-1}\right)
$$

Using these above definitions, the condition $\chi(p)=1$ is equivalent to

$$
\sum_{i=1}^{r} \frac{\alpha_{r}}{f_{r}} \in \mathbb{Z}
$$

and the condition $\chi(-1)=-1$ translates to $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}$ is odd. Lastly, the condition that χ is primitive just implies that $\chi_{1}, \chi_{2}, \chi_{3}$ are not trivial. Thus we lastly need $\alpha_{1} \neq a-1, \alpha_{2} \neq b-1, \alpha_{3} \neq c-1$, as desired.

Lemma 14.3. Let a, b, c, p be distinct primes. Suppose $f=\operatorname{ord}_{a b c}(p), f_{1}=\operatorname{ord}_{a}(p), f_{2}=\operatorname{ord}_{b}(p)$, and $f_{3}=\operatorname{ord}_{c}(p)$ and let $2^{r}, 2^{s}, 2^{t}$ be the highest power of 2 dividing f_{1}, f_{2}, f_{3} respectively. Then there exists a character χ primitive modulo abc such that $\chi(-1)=-1$ and $\chi(p)=1$ only if one of the following holds

- $p^{f / 2} \equiv-1(\bmod a b c)$
- $f_{2}=b-1, f_{3}=c-1, r>s, s=1, t=1$
- $f_{1}=a-1, f_{2}=b-1, f_{3}=c-1, r>s, s=2, t=1$

Proof. We will do this by casework, using the result of lemma 14.2. To make things easier for ourselves suppose $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ are the largest odd numbers dividing f_{1}, f_{2}, f_{3} respectively. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be as in the statement of lemma 14.2:

Case $(r=s=t): \quad$ This is simply equivalent to $w^{f / 2} \equiv-1(\bmod p)$.
Case $(r>s>t)$: If $t \neq 1$ taking $\alpha_{1}=f_{1}^{\prime} 2^{r-s}, \alpha_{2}=f_{2}^{\prime}\left(2^{s-t}-1\right), \alpha_{3}=f_{3}^{\prime} 2^{t-1}$ gives us a primitive character satisfying the desired conditions. If $t=1$ and $s \neq 2$, taking $\alpha_{1}=f_{1}^{\prime} 2^{r-t-1}, \alpha_{2}=f_{2}^{\prime} 2^{s-t-1}, \alpha_{3}=$ $f_{3}^{\prime}\left(2^{t}-1\right)$ gives us a primitive character satisfying the desired conditions. As there exists no such characters, these cases are impossible. Hence $r>s=2>t=1$.

Now suppose we have $r>s=2>t=1$. Consider the case $\alpha_{1}=f_{1}^{\prime} 2^{r-s}, \alpha_{2}=3 f_{2}^{\prime}, \alpha_{3}=2 f_{3}^{\prime}$. This implies that $f_{3}=2 f_{3}^{\prime}=c-1$, as otherwise this gives a character and hence a contradiction. Similarly, consider the case $\alpha_{1}=f_{1}^{\prime} 2^{r-s+1}, \alpha_{2}=4 f_{2}^{\prime}, \alpha_{3}=f_{3}^{\prime}$. By the same reasoning, this implies that $f_{2}=4 f_{2}^{\prime}=q b-1$. Lastly, consider the case $\alpha_{1}=f_{1}^{\prime} 2^{r}, \alpha_{2}=2 f_{2}^{\prime}, \alpha_{3}=f_{3}^{\prime}$. Again, this implies that $f_{1}=2^{r} f_{2}^{\prime}=a-1$. This completes our analysis of this case.

Case $(r=s>t)$: Taking $\alpha_{1}=f_{1}^{\prime}, \alpha_{2}=f_{2}^{\prime}\left(2^{s-t}-1\right), \alpha_{3}=f_{3}^{\prime}\left(2^{t}-1\right)$ gives us a primitive character satisfying the desired conditions. Thus we get a contradiction, so this case is impossible.

Case $(r>s=t)$: If $t \neq 1$, taking $\alpha_{1}=2^{r-s} f_{1}^{\prime}, \alpha_{2}=f_{2}^{\prime}\left(2^{s}-2\right), \alpha_{3}=f_{3}^{\prime}$ gives us a primitive character satisfying the desired conditions. Hence $t=1$.

Now suppose we have $r>s=t=1$. Consider the case $\alpha_{1}=f_{1}^{\prime} 2^{r-1}, \alpha_{2}=f_{2}^{\prime}, \alpha_{3}=2 f_{3}^{\prime}$. This implies that $f_{3}=2 f_{3}^{\prime}=c-1$, as otherwise this gives a character and hence a contradiction. Similarly, consider the case $\alpha_{1}=f_{1}^{\prime} 2^{r-1}, \alpha_{2}=2 f_{2}^{\prime}, \alpha_{3}=f_{3}^{\prime}$. By the same reasoning, $f_{2}=2 f_{2}^{\prime}=b-1$.

We have now exhausted all possible cases and have shown that the only possible choices are those in the theorem statement.

Lemma 14.4. (Coyne) Let R be a positive integer and let $a_{1}, a_{2}, \ldots, a_{k}$ be positive integers all dividing R. Then the number of solutions $\left(b_{1}, \ldots, b_{k}\right) \in \prod_{i=1}^{k} \mathbb{Z} / a_{i} \mathbb{Z}$ to

$$
\sum_{i=1}^{k} \frac{R b_{i}}{a_{i}} \equiv 0 \quad(\bmod R)
$$

is equal to

$$
\frac{\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \prod_{i=1}^{k} a_{i}}{R}
$$

Proof. Consider the homomorphism:

$$
\phi: \prod_{i=1}^{k} \mathbb{Z} / a_{i} \mathbb{Z} \rightarrow \mathbb{Z} / R \mathbb{Z}
$$

given by

$$
\phi\left(b_{1}, \ldots, b_{k}\right)=\sum_{i=1}^{k} \frac{R b_{i}}{a_{i}} \quad(\bmod R)
$$

The size of the kernel of this map is precisely the quantity we are looking for. Now consider im ϕ. This will be the elements of $\mathbb{Z} / R \mathbb{Z}$ with nonzero image in $\mathbb{Z} / \operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mathbb{Z}$. Thus:

$$
|\operatorname{im} \phi|=\frac{R}{\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)}
$$

Lastly, by the first isomorphism theorem,

$$
|\operatorname{ker} \phi|=\frac{\left|\prod_{i=1}^{k} \mathbb{Z} / a_{i} \mathbb{Z}\right|}{|\operatorname{im} \phi|}=\frac{\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \prod_{i=1}^{k} a_{i}}{R}
$$

Lemma 14.5. Let a, b, c, p be distinct primes. Suppose $f=\operatorname{ord}_{a b c}(p), f_{1}=\operatorname{ord}_{a}(p), f_{2}=\operatorname{ord}_{b}(p)$, and $f_{3}=\operatorname{ord}_{c}(p)$ and let $2^{r}, 2^{s}, 2^{t}$ be the highest power of 2 dividing f_{1}, f_{2}, f_{3} respectively. Lastly, let $f_{1}^{\prime}, f_{2}^{\prime}$, f_{3}^{\prime} be the largest odd integers dividing f_{1}, f_{2}, f_{3} respectively. If $r \geq s \geq t \geq 1$ and $p^{f / 2} \not \equiv-1(\bmod a b c)$, there does not exist a character χ primitive modulo a, b, c such that $\chi(-1)=-1$ and $\chi(p)=1$ if and only if $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ are pairwise coprime and one the following two conditions holds:

$$
\text { 1. } f_{2}=b-1, f_{3}=c-1, r>s, s=1, t=1
$$

$$
\text { 2. } f_{1}=a-1, f_{2}=b-1, f_{3}=c-1, r>s, s=2, t=1
$$

Proof. By lemma 14.3, all that is left to show is that if one of the two cases holds then $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ being pairwise coprime is a necessary and sufficient condition on the existence of a character. By lemma 14.2, such a character exists if and only if we can find $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that:

$$
S:=\frac{\alpha_{1}}{2^{r} f_{1}^{\prime}}+\frac{\alpha_{2}}{2^{s} f_{2}^{\prime}}+\frac{\alpha_{3}}{2^{t} f_{3}^{\prime}} \in \mathbb{Z}
$$

and $\alpha+\alpha_{2}+\alpha_{3} \in \mathbb{Z}$. In the first of our two conditions, the only possible values of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ modulo $2^{r}, 2^{s}, 2^{t}$ such that the sum of the α_{i} is odd and the denominator of S is odd are $\alpha_{1} \equiv 2^{r-1}\left(\bmod 2^{r}\right)$ and exactly one of α_{2}, α_{3} is odd. Thus, as the choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ modulo $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ will determine if S is an integer, there does not exist such a primitive character if and only if the only choices of α_{2}, α_{3} have $f_{2}^{\prime} \mid \alpha_{2}$ and $f_{3}^{\prime} \mid \alpha_{3}$.

Similarly, in the second of our two conditions, the only possible values have one of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ modulo $2^{r}, 2^{s}, 2^{t}$ that do give rise to a character has one of the $\alpha \mathrm{s} 0$ in the respective modulus. Furthermore, there exists at least one choice of modular remainders for which each of them is 0 and no others are. Thus there does not exist such a primitive character if and only the only choices of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are divisible by $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ respectively.

In both cases, this comes down to determining whether there are solutions to:

$$
T\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right):=\frac{\gamma_{1}}{f_{1}^{\prime}}+\frac{\gamma_{2}}{f_{2}^{\prime}}+\frac{\gamma_{3}}{f_{3}^{\prime}} \in \mathbb{Z}
$$

with $f_{i} \nmid \gamma_{i}$ as we can pick $\alpha_{1}, \alpha_{2}, \alpha_{3}$ modulo $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ respectively such that $\gamma_{1}=2^{i} \alpha_{1}, \gamma_{2}=2^{j} \alpha_{2}, \gamma_{3}=2^{k} \alpha_{3}$ for any i, j, k.

Let $R=\operatorname{lcm}\left(f_{1}^{\prime} f_{2}^{\prime} f_{3}^{\prime}\right)$ and w_{i}. Any choice of γ_{i} with $T \in Z$ will have $f_{2}^{\prime}\left|\alpha_{2}, f_{3}^{\prime}\right| \alpha_{3}$ if and only if $f_{1}^{\prime} \mid \alpha_{1}$. Thus $T \in Z$ if and only if the number of solutions to:

$$
\frac{R \gamma_{1}}{f_{1}^{\prime}}+\frac{R \gamma_{1}}{f_{1}^{\prime}}+\frac{R \gamma_{1}}{f_{1}^{\prime}} \equiv 0 \quad(\bmod R)
$$

is 1 . By lemma 14.4 , this occurs if and only if:

$$
f_{1} f_{2} f_{3} \operatorname{gcd}\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{lcm}\left(f_{1}, f_{2}, f_{3}\right)
$$

Which occurs if and only if f_{1}, f_{2}, f_{3} are pairwise coprime, as desired.
Theorem 14.6. Let a, b, c, p be distinct primes. Suppose that the order of p modulo each of a, b, c is even. Then he projective variety V defined by

$$
w^{a b c}+x^{a}+y^{b}+z^{c}=0
$$

over \mathbb{F}_{p} is supersingular if and only if for all μ relatively prime to abc,

$$
\left\{\frac{\mu p^{i}}{a b c}\right\}=\frac{f}{2}
$$

Proof. By (Insert Citation), V is supersingular if and only if for all $a \nmid \beta_{1}, b \nmid \beta_{2}, c \nmid \beta_{3}, a b c \nmid \beta_{4}$ such that

$$
\frac{\beta_{1}}{a}+\frac{\beta_{2}}{b}+\frac{\beta_{3}}{c}+\frac{\beta_{4}}{a b c} \in Z
$$

we have:

$$
\sum_{i=0}^{f}\left[\left\{\frac{\mu \beta_{1} p^{i}}{a}\right\}+\left\{\frac{\mu \beta_{2} p^{i}}{b}\right\}+\left\{\frac{\mu \beta_{3} p^{i}}{c}\right\}+\left\{\frac{\mu \beta_{4} p^{i}}{a b c}\right\}\right]=2 f
$$

As p has even order modulo each of a, b, c there exists a power of it which is -1 modulo each of a, b, c. As such we can pair up to get

$$
\sum_{i=0}^{f}\left\{\frac{\mu \beta_{1} p^{i}}{a}\right\}=\sum_{i=0}^{f}\left\{\frac{\mu \beta_{2} p^{i}}{b}\right\}=\sum_{i=0}^{f}\left\{\frac{\mu \beta_{3} p^{i}}{c}\right\}=\frac{f}{2}
$$

Hence the above condition is equivalent to:

$$
\left\{\frac{\mu \beta_{4} p^{i}}{a b c}\right\}=\frac{f}{2}
$$

As $\mu \beta_{4}$ ranges over the same set as just μ, this is equivalent to for all μ relatively prime to $a b c$:

$$
\left\{\frac{\mu p^{i}}{a b c}\right\}=\frac{f}{2}
$$

as desired
Theorem 14.7. Let a, b, c, p be distinct primes. Suppose $f=\operatorname{ord}_{a b c}(p), f_{1}=\operatorname{ord}_{a}(p), f_{2}=\operatorname{ord}_{b}(p)$, and $f_{3}=\operatorname{ord}_{c}(p)$ and let $2^{r}, 2^{s}, 2^{t}$ be the highest power of 2 dividing f_{1}, f_{2}, f_{3} respectively. Lastly, let $f_{1}^{\prime}, f_{2}^{\prime}$, f_{3}^{\prime} be the largest odd integers dividing f_{1}, f_{2}, f_{3} respectively. If $r \geq s \geq t \geq 1$ and the projective variety V defined by

$$
w^{a b c}+x^{a}+y^{b}+z^{c}=0
$$

over \mathbb{F}_{p} is supersingular and $p^{f / 2} \not \equiv-1\left(\bmod\right.$ abc) then $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ are pairwise coprime and one the following two holds:

- $f_{2}=b-1, f_{3}=c-1, r>s, s=1, t=1$
- $f_{1}=a-1, f_{2}=b-1, f_{3}=c-1, r>s, s=2, t=1$

Proof. By theorem 14.6, we have for all μ relatively prime to $a b c$:

$$
\left\{\frac{\mu p^{i}}{a b c}\right\}=\frac{f}{2}
$$

The result of lemma 14.1 then implies that there does not exist a character χ primitive modulo $a b c$ such that $\chi(p)=1, \chi(-1)=-1$. From this, lemma 14.5 gives us the desired result.

Lemma 14.8. Suppose a, b, c, p are primes with $f=\operatorname{ord}_{a b c}(p)$ and $f_{1}=\operatorname{ord}_{b c}(a)$. Let H be the subgroup of $(\mathbb{Z} / a \mathbb{Z})^{\times}$generated by $p^{f_{1}}$. Then for all μ not divisible by a, b, c we have:

$$
\sum_{h \in(\mathbb{Z} / a \mathbb{Z})^{\times} / H} \sum_{i=0}^{f-1}\left\{\frac{\mu h p^{i}}{a b c}\right\}=\frac{f_{1}(a-1)}{2}
$$

if and only if for all μ not divisible by b, c we have:

$$
\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}}{b c}\right\}=\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu u p^{i}}{b c}\right\}
$$

where $u \equiv a^{-1}(\bmod b c)$.
Proof. Note that we have:

$$
\begin{equation*}
\sum_{h \in H} \sum_{i=0}^{f-1}\left\{\frac{\mu h p^{i}}{a b c}\right\}=\sum_{k \in(\mathbb{Z} / a \mathbb{Z})^{\times}} \sum_{i=0}^{f_{1}-1}\left\{\frac{\mu k p^{i}}{a b c}\right\}=\sum_{k \in(\mathbb{Z} / a \mathbb{Z})} \sum_{i=0}^{f_{1}-1}\left\{\frac{\mu k p^{i}}{a b c}\right\}-\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu u p^{i}}{b c}\right\} \tag{1}
\end{equation*}
$$

where we view $k \in(\mathbb{Z} / a \mathbb{Z})^{\times}$as the element x for which:

$$
\begin{array}{ll}
x \equiv k & (\bmod a) \\
x \equiv 1 & (\bmod b) \\
x \equiv 1 & (\bmod c)
\end{array}
$$

Now as $f_{1}=\operatorname{ord}_{p}(b c)$ for each pair of remainders $f(\bmod b), g(\bmod c)$ there exists at most one remainder modulo $e(\bmod a)$ such that there exists an i for which p^{i} is equivalent to each of those in the respective modulus. As such we have:

$$
\sum_{k \in(\mathbb{Z} / a \mathbb{Z})^{\times}} \sum_{i=0}^{f_{1}-1}\left\{\frac{\mu k p^{i}}{a b c}\right\}=\sum_{j=0}^{a-1} \sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}+j b c}{a b c}\right\}
$$

Now for each i let j_{i} be the j for which

$$
\left\{\frac{\mu p^{i}+j b c}{a b c}\right\}<\frac{1}{a}
$$

We then get:

$$
\begin{aligned}
\sum_{k \in(\mathbb{Z} / a \mathbb{Z}) \times} \sum_{i=0}^{f_{1}-1}\left\{\frac{\mu k p^{i}}{a b c}\right\} & =\sum_{j=0}^{a-1} \sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}+j_{0} b c+j b c}{a b c}\right\} \\
& =\sum_{j=0}^{a-1}\left[\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}+j_{0} b c}{a b c}\right\}+\frac{j}{a}\right] \\
& =\frac{(a-1) f_{1}}{2}+\sum_{i=0}^{f_{1}-1} a\left\{\frac{\mu p^{i}+j_{0} b c}{a b c}\right\}
\end{aligned}
$$

Now as $\left\{\frac{\mu p^{i}+j_{0} b c}{a b c}\right\}<\frac{1}{a}$ we have

$$
a\left\{\frac{\mu p^{i}+j_{0} b c}{a b c}\right\}=\left\{\frac{\mu a p^{i}+j_{0} a b c}{a b c}\right\}=\left\{\frac{\mu p^{i}}{b c}\right\}
$$

Thus we get:

$$
\sum_{k \in(\mathbb{Z} / a \mathbb{Z})^{\times}} \sum_{i=0}^{f_{1}-1}\left\{\frac{\mu k p^{i}}{a b c}\right\}=\frac{(a-1) f_{1}}{2}+\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}}{b c}\right\}
$$

Plugging this back into equation gives:

$$
\sum_{h \in H} \sum_{i=0}^{f-1}\left\{\frac{\mu h p^{i}}{a b c}\right\}=\frac{(a-1) f_{1}}{2}+\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}}{b c}\right\}-\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu u p^{i}}{b c}\right\}
$$

Rearranging we get:

$$
\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu u p^{i}}{b c}\right\}=\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}}{b c}\right\}+\frac{(a-1) f_{1}}{2}-\sum_{h \in H} \sum_{i=0}^{f-1}\left\{\frac{\mu h p^{i}}{a b c}\right\}
$$

which implies the desired result.
Theorem 14.9. Suppose a, b, c, p are primes with $f=\operatorname{ord}_{a b c}(p)$. Let $f_{1}=\operatorname{ord}_{a}(p), f_{2}=\operatorname{ord}_{b}(p), f_{3}=$ $\operatorname{ord}_{c}(p)$. Let $2^{r}, 2^{s}, 2^{t}$ be the highest power of 2 dividing f_{1}, f_{2}, f_{3} respectively. If $r>s=t=1, f_{2}=b-1$, $f_{3}=c-1$, the largest odd divisors of f_{1}, f_{2}, f_{3} are comprime, and there exists i, j such that $p^{i} \equiv b(\bmod a c)$ and $p^{i} \equiv(\bmod a b)$ then the projective variety V defined by

$$
w^{a b c}+x^{a}+y^{b}+z^{c}=0
$$

over \mathbb{F}_{p} is supersingular.

Proof. Let u be defined to be the integer satisfying the following equivalences:

$$
\begin{aligned}
& u \equiv 1 \quad(\bmod a) \\
& u \equiv-1 \quad(\bmod b) \\
& u \equiv 1 \quad(\bmod c)
\end{aligned}
$$

Similarly let v be an integer such that

$$
\begin{aligned}
& v \equiv 1 \quad(\bmod a) \\
& v \equiv 1 \quad(\bmod b) \\
& v \equiv-1 \quad(\bmod c)
\end{aligned}
$$

Let H be the subgroup of $(\mathbb{Z} / a b c \mathbb{Z})^{\times}$generated by p. Let S be a set of coset representatives for H in $(\mathbb{Z} / a b c \mathbb{Z})^{\times}$. We claim for all $x \in S$ the cosets $x H,-x H, u x H, v x H$ are distinct. Note that as $r>s=t>0$ $-1, u, v$ cannot be powers of p. Thus $u H, v H,-H$ are distinct from H. Now note that $u^{2}=v^{2}=1$. Furthermore, $u v \in-H$ as:

$$
\begin{aligned}
-p^{f / 2} & \equiv 1 \quad(\bmod a) \\
-p^{f / 2} & \equiv-1 \quad(\bmod b) \\
-p^{f / 2} & \equiv-1 \quad(\bmod c)
\end{aligned}
$$

Thus $(u H)^{2}=H,(v H)^{2}=H,(u H)(v H)=-H$. Thus implies $H,-H, u H, v H$ are the distinct cosets of H and hence $x H,-x H, u x H, v x H$ are distinct. Now define

$$
g(\mu):=\sum_{i=1}^{f}\left\{\frac{\mu p^{i}}{a b c}\right\}
$$

By theorem 14.6, V is supersingular if and only if:

$$
g(\mu)=\frac{f}{2}
$$

for all μ relatively prime to $a b c$. As $g(\mu)=g(p \mu)$, we then only need to show equation 14 holds for all $\mu \in S$. We will now show that those equivalences holds. Due to pairing up:

$$
g(\mu)+g(-\mu)=f
$$

Now as b lies in the subgroup generated by p modulo $a c$, we have for all μ :

$$
\sum_{i=0}^{f_{2}-1}\left\{\frac{\mu p^{i}}{a c}\right\}=\sum_{i=0}^{f_{2}-1}\left\{\frac{\mu b p^{i}}{a c}\right\}
$$

Thus by lemma 14.8 , for all μ relatively prime to $a b c$,

$$
\sum_{g \in(\mathbb{Z} / b \mathbb{Z})^{\times} / G} \sum_{i=1}^{f-1}\left\{\frac{\mu g p^{i}}{a b c}\right\}=\frac{f_{2}(b-1)}{2}
$$

where G is the subgroup of $(\mathbb{Z} / b \mathbb{Z})^{\times}$generated by $p^{f_{4}}$ for $f_{4}=\operatorname{ord}_{a c}(p)=\operatorname{lcm}\left(f_{1}, f_{3}\right)$. As the odd parts of f_{1}, f_{2}, f_{3} are coprime, p is a primitive root modulo b, and $r>s=1$, we will have $\operatorname{gcd}\left(f_{4}, b-1\right)=$ $\operatorname{gcd}\left(f_{4}, f_{2}\right)=2$. Thus G will be the set of squares modulo b. As $s=1, b \equiv 3(\bmod 4)$ and so -1 is not a square modulo b. As such, $1, u$ are the coset representatives of $(\mathbb{Z} / b \mathbb{Z})^{\times} / G$. Thus we have:

$$
g(\mu)+g(u \mu)=f
$$

As $(u v \mu H)=-\mu H$, plugging in $-\mu$ gives:

$$
g(-\mu)+g(v \mu)=f
$$

As $g(-\mu)+g(\mu)=f$, this means $g(\mu)=g(v \mu)$. Applying the same reasoning to the subgroup generated by p modulo $a b$:

$$
g(\mu)+g(v \mu)=f
$$

which implies for all μ relatively prime to $a b c$ we have: $g(\mu)=f / 2$. As stated before, this implies V is supersingular.

Theorem 14.10. Suppose d, e, g, p are primes with p a primitive root modulo e, g and $v_{2}(e-1)>v_{2}(g-1)=1$ and $\operatorname{gcd}(e-1, g-1)=2$. If the projective variety V defined by

$$
w^{d e g}+x^{d}+y^{e}+z^{g}=0
$$

over \mathbb{F}_{p} is supersingular then there exists i such that $p^{i} \equiv d(\bmod e g)$.
Proof. As p is a primitive root modulo e, g and $\operatorname{gcd}(e-1, g-1)=2, p$ generates a subgroup of order $\frac{\phi(e g)}{2}$ modulo $e g$. Thus if there does not exist an i for which $p^{i} \equiv d(\bmod e g), d, p$ must generate $(\mathbb{Z} / e g \mathbb{Z})^{\times}$. By theorem 14.6 and lemma 14.8 , we must have for each μ relatively prime to $a c$

$$
\sum_{i=0}^{\frac{\phi(e g)}{2}-1}\left\{\frac{\mu p^{i}}{e g}\right\}=\sum_{i=0}^{\frac{\phi(e g)}{2}-1}\left\{\frac{\mu d p^{i}}{e g}\right\}
$$

However, as d, p generate $(\mathbb{Z} / e g \mathbb{Z})^{\times}$, this implies for each μ

$$
\sum_{i=0}^{\frac{\phi(e g)}{2}-1}\left\{\frac{\mu p^{i}}{e g}\right\}
$$

is constant and thus equal to $\frac{\phi(e g)}{2}$ as summing the sums for $\mu=1, \mu=-1$ gives $\phi(e g)$ by cancellation. However, by lemma 14.1, this implies there cannot exist a character primitive modulo eg with $\chi(-1)=$ $-1, \chi(p)=1$. However, if we take $\alpha_{1}=\frac{e-1}{2}, \alpha_{3}=\frac{g-1}{2}$ then:

$$
\frac{\alpha_{1}}{f_{1}}+\frac{\alpha_{3}}{f_{3}} \in \mathbb{Z}
$$

and $\alpha_{1}+\alpha_{3}$ is odd. Thus by lemma 14.2 , there should exist such a character satisfying those conditions, which gives us a contradiction. Thus d is in the group generated by p modulo eg.

Corollary 14.10.1. Suppose a, b, c, p are primes with p a primitive root modulo $a, b, c, v_{2}(a-1)>v_{2}(b-1)=$ $2>v_{2}(a-1)=1$, and the odd parts of $a-1, b-1, c-1$ relatively prime. If the projective variety V defined by

$$
w^{a b c}+x^{a}+y^{b}+z^{c}=0
$$

over \mathbb{F}_{p} is supersingular then there exists i, j, k such that $p^{i} \equiv a(\bmod b c), p^{j} \equiv b(\bmod a c), p^{k} \equiv c(\bmod a b)$.
Proof. The existence of i, j follow from theorem ??. Note that p generates a group of order $\frac{\phi(a b)}{4}$ modulo $a b$. By theorem 14.6 and lemma 14.8, we must have for each μ relatively prime to $a b$

$$
\sum_{i=0}^{\frac{\phi(a b)}{2}-1}\left\{\frac{\mu p^{i}}{a b}\right\}=\sum_{i=0}^{\frac{\phi(a b)}{2}-1}\left\{\frac{\mu c p^{i}}{a b}\right\}
$$

Now if c, p generate $(\mathbb{Z} / a b \mathbb{Z})^{\times}$, then

$$
\sum_{i=0}^{\frac{\phi(a b)}{2}-1}\left\{\frac{\mu p^{i}}{a b}\right\}
$$

is constant across all μ relatively prime to $a b$. If c, p don't generate $(\mathbb{Z} / a b \mathbb{Z})^{\times}$then they generate a group $N=\langle c, p\rangle$ of index 2 over $\langle p\rangle$. As a result, $c^{2} \in\langle p\rangle$. Thus there exists an i such that

$$
p^{i} \equiv c^{2} \quad(\bmod a b)
$$

Assume the i above is minimal. If i is odd then $v_{2}\left(\operatorname{ord}_{a b}(c)\right)=r+1$, which cannot happen as $\max \left(v_{2}(a-\right.$ $\left.1), v_{2}(b-1)\right)=r$. If r is even, then there exists a u such that $u^{2}=1(\bmod a b)$ and

$$
p^{i / 2} \equiv u c \quad(\bmod a b)
$$

u must be ± 1 modulo each of a, b. If it is $1 \bmod b$, then it is either equal to $p^{\phi(a b) / 4}$ or $p^{\phi(a b) / 8}$. Otherwise, either $p^{\phi(a b) / 8} u=-1$ or $u=-1$. Either way we have $-1 \in\langle c, p\rangle$. However, this implies

$$
\sum_{i=0}^{\frac{\phi(a b)}{2}-1}\left\{\frac{\mu p^{i}}{a b}\right\}=\sum_{i=0}^{\frac{\phi(a b)}{2}-1}\left\{\frac{-\mu p^{i}}{a b}\right\}
$$

However, by cancellation the two sides of the above equality sum to $\phi(a b) / 4$. Thus in both of our cases we have:

$$
\sum_{i=0}^{\frac{\phi(a b)}{2}-1}\left\{\frac{\mu p^{i}}{a b}\right\}=\frac{\phi(a b)}{8}
$$

However, by lemma 14.1, this implies there cannot exist a character primitive modulo $a b$ with $\chi(-1)=$ $-1, \chi(p)=1$. However, if we take $\alpha_{1}=\frac{a-1}{4}, \alpha_{3}=\frac{3(b-1)}{4}$ then:

$$
\frac{\alpha_{1}}{f_{1}}+\frac{\alpha_{3}}{f_{3}} \in \mathbb{Z}
$$

and $\alpha_{1}+\alpha_{3}$ is odd. Thus by lemma 14.2, there should exist such a character satisfying those conditions, which gives us a contradiction. Thus c is in the group generated by p modulo $a b$, as desired.

Theorem 14.11. Suppose a, b, c, p are primes with $f=\operatorname{ord}_{a b c}(p)$. Let $f_{1}=\operatorname{ord}_{a}(p), f_{2}=\operatorname{ord}_{b}(p), f_{3}=$ $\operatorname{ord}_{c}(p)$. Let $2^{r}, 2^{s}, 2^{t}$ be the highest power of 2 dividing f_{1}, f_{2}, f_{3} respectively. If $r>s=2>t=1$, $f_{1}=a-1, f_{2}=b-1, f_{3}=c-1$, the largest odd divisors of f_{1}, f_{2}, f_{3} are coprime, and there exists i, j, k such that $p^{i} \equiv a(\bmod b c), p^{j} \equiv b(\bmod a c)$, and $p^{k} \equiv c(\bmod a b)$ then the projective variety V defined by

$$
w^{a b c}+x^{a}+y^{b}+z^{c}=0
$$

over \mathbb{F}_{p} is supersingular.
Proof. Suppose i is an integer such that $i^{2} \equiv-1(\bmod b)$. Let α_{1} be defined to be the integer satisfying the following equivalences:

$$
\begin{array}{ll}
\alpha_{1} \equiv 1 & (\bmod a) \\
\alpha_{1} \equiv i & (\bmod b) \\
\alpha_{1} \equiv 1 & (\bmod c)
\end{array}
$$

Let $H=\langle p\rangle$ in $G=(\mathbb{Z} / a b c \mathbb{Z})^{\times}$. Note that $-1, \alpha_{1}$ generate the 8 cosets of H. Let G_{a} be the subgroup of G with elements $\equiv 1(\bmod b c)$ and let G_{b}, G_{c} be defined similarly. Let $H_{a}=G_{a} \cap H$ and let H_{b}, H_{c} be defined similarly. Observe the following:

- The cosets of H_{c} in G_{c} are generated by $-\alpha_{1}^{2}$
- The cosets of H_{b} in G_{b} are generated by α_{1}
- The cosets of H_{c} in G_{c} are generated by $-\alpha_{1}$

Let

$$
g(\mu)=\sum_{i=0}^{f-1}\left\{\frac{\mu p^{i}}{a b c}\right\}
$$

As a is in the group generated by p in $(\mathbb{Z} / b c \mathbb{Z})^{\times}$we have for all μ relatively prime to $b c$

$$
\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu p^{i}}{b c}\right\}=\sum_{i=0}^{f_{1}-1}\left\{\frac{\mu a p^{i}}{b c}\right\}
$$

Thus by lemma 14.8 , for all μ relatively prime to $a b c$,

$$
\sum_{g \in G_{b} / H_{b}} \sum_{i=1}^{f-1}\left\{\frac{\mu g p^{i}}{a b c}\right\}=\frac{f_{1}(a-1)}{2}
$$

Which by observation 1 , is equivalent to:

$$
g(\mu)+g\left(-\alpha_{1}^{2} \mu\right)=f
$$

By the same reasoning observation (2) becomes:

$$
g(\mu)+g\left(\alpha_{1} \mu\right)+g\left(\alpha_{1}^{2} \mu\right)+g\left(\alpha_{1}^{3} \mu\right)=2 f
$$

and observation (3) becomes:

$$
g(\mu)+g\left(-\alpha_{1} \mu\right)+g\left(\alpha_{1}^{2} \mu\right)+g\left(-\alpha_{1}^{3} \mu\right)=2 f
$$

These equations combined with:

$$
g(\mu)+g(-\mu)=f
$$

gives:

$$
g(\mu)=\frac{f}{2}
$$

By theorem 14.6, V is supersingular.
Conjecture 14.12. Let a, b, c, p be distinct primes. Let $f=\operatorname{ord}_{a b c}(p), f_{1}=\operatorname{ord}_{a}(p), f_{2}=\operatorname{ord}_{b}(p), f_{3}=$ $\operatorname{ord}_{c}(p)$ and let $2^{r}, 2^{s}, 2^{t}$ be the largest powers of 2 dividing f_{1}, f_{2}, f_{3} respectively. If $r \geq s \geq t$, the variety V defined by the equation:

$$
x^{a}+y^{b}+z^{c}+w^{a b c}
$$

is supersingular if and only if $p^{f / 2} \equiv-1(\bmod a b c)$ or if conditions 1,2 hold and either of 3,4 hold:

1. $r>s$ and $\frac{f_{1}}{2^{r}}, \frac{f_{2}}{2^{s}}, \frac{f_{3}}{2^{t}}$ are pairwise coprime.
2. $f_{2}=b-1, f_{3}=c-1$ and there exists an integer j such that $p^{j} \equiv c(\bmod a b)$
3. $s=t=1$ and there exists an integer i such that $p^{i} \equiv b(\bmod a c)$
4. $s=2, t=1, f_{1}=a-1$, and there exists an integer i such that $p^{i} \equiv a(\bmod b c)$ and there exists an integer j such that $p^{j} \equiv b(\bmod a c)$

15 Surfaces of the Form $w^{a}+x^{a}+y^{a b}+z^{a b}$

Let X be the diagonal surface defined by $w^{a}+x^{a}+y^{a b}+z^{a b}$ over \mathbb{F}_{p}.
Lemma 15.1. Let $H_{1}, H_{2} \triangleleft G$ be normal subgroups with quotient maps $\pi_{i}: G \rightarrow G / H_{i}$ and consider the maps,

$$
\varphi_{i, j}: H_{i} \hookrightarrow G \stackrel{\pi_{j}}{\longrightarrow} G / H_{j}
$$

Then $\varphi_{1,2}$ is surjective iff $\varphi_{2,1}$ is surjective.

Proof. Consider the commutative diagram with exact rows and columns,

where $K_{i}=H_{i} /\left(H_{1} \cap H_{2}\right)$ and the maps $\bar{\varphi}_{i, j}: K_{i} \rightarrow G / H_{j}$ are induced by the maps $\varphi_{i, j}$ and are injective by the first isomorphism theorem. Exactness and commutativity are obvious except at C which I have yet to define! By commutativity and surjectivity, $\operatorname{im} \bar{\varphi}_{i, j}=\pi_{j}(H) \triangleleft \operatorname{im} \pi_{j}=G / H_{j}$ so $\Im \bar{\varphi}_{i, j}$ is a normal subgroup and thus coker $\bar{\varphi}_{i, j}=\left(G / H_{j}\right) / \operatorname{im} \bar{\varphi}_{i, j}$ exists. Take $C=\operatorname{coker} \bar{\varphi}_{1,2}$. Furthermore, the exactness of columns gives a surjective map $G / H_{1} \rightarrow C$ which makes the bottom right square commute. By the nine lemma, the bottom row is exact proving that $C=\operatorname{coker} \bar{\varphi}_{2,1}$. Finally, by exactness,

$$
\bar{\varphi}_{1,2} \text { is an isomorphism } \Longleftrightarrow C=0 \Longleftrightarrow \bar{\varphi}_{2,1} \text { is an isomorphism }
$$

But $\varphi_{i, j}$ is a surjection iff $\bar{\varphi}_{i, j}$ is an isomorphism so $\varphi_{1,2}$ is surjective iff $\varphi_{2,1}$ is surjective.
Lemma 15.2. Let $p: G \rightarrow G^{\prime}$ be surjective and $H \triangleleft G$ a normal subgroup. Then there exist coset representatives for G / H with fixed image in G^{\prime} if and only if $p(H)=G^{\prime}$. Furthermore, we if this holds, we may take the coset representatives to be trivial in G^{\prime}.

Proof. A set $S \subset G$ contains a full set of coset represenatives for G / H if $\pi(S)=G / H$. Therefore, we require that $\pi\left(p^{-1}(x)\right)=G / H$ for some $x \in G^{\prime}$. Since we must hit the identity, $H \cap p^{-1}(x) \neq \varnothing$ so there exits $h \in H$ such that $p(h)=x$. Thus, $p^{-1}(x)=h \operatorname{ker} p$ so $\pi\left(p^{-1}(h)\right)=\pi(h) \pi(\operatorname{ker} p)=\pi(\operatorname{ker} p)$ so we may take $h=e$. The conclusion holds if and only if $\pi(\operatorname{ker} p)=G / H$.

Take $H_{1}=H$ and $H_{2}=\operatorname{ker} p$ in Lemma 15.1 and thus,

$$
\operatorname{im} \varphi_{2,1}=\pi(\operatorname{ker} p)=G / H \Longleftrightarrow \operatorname{im} \varphi_{1,2}=\pi_{2}(H)=G / \operatorname{ker} p
$$

but the map p naturally factors through $G / \operatorname{ker} p$ as,

so $p(H)=G^{\prime} \Longleftrightarrow \pi_{2}(H)=G / \operatorname{ker} p$.
Theorem 15.3. Suppose there exists a subgroup $H \subset(\mathbb{Z} / a b \mathbb{Z})^{\times}$such that $p \in H$ and $-1 \notin H$

$$
H \hookrightarrow(\mathbb{Z} / a b \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / a \mathbb{Z})^{\times}
$$

is surjective. Then X is not supersingular.

Proof. By Theorem 6.15, if X is supersingular then,

$$
\sum_{i=0}^{3} \sum_{j=0}^{f-1}\left\{\frac{\mu e_{i} p^{j}}{a b}\right\}=2 f
$$

However, there is a projection map $X \rightarrow F_{a}^{3}$ so F_{a}^{3} is supersingular and thus, by Shioda, $p^{v} \equiv-1 \bmod a$. However, we know that,

$$
\frac{e_{0}^{\prime}}{a}+\frac{e_{1}^{\prime}}{a}+\frac{e_{2}^{\prime}}{a b}+\frac{e_{2}^{\prime}}{a b}=\frac{b\left(e_{0}^{\prime}+e_{1}^{\prime}\right)+e_{2}^{\prime}+e_{3}^{\prime}}{a b} \in \mathbb{Z}
$$

and thus $b \mid e_{2}^{\prime}+e_{3}^{\prime}$. Thus we have,

$$
\sum_{j=0}^{f-1}\left\{\frac{\mu e_{0}^{\prime} p^{j}}{a}\right\}+\sum_{j=0}^{f-1}\left\{\frac{\mu e_{1}^{\prime} p^{j}}{a}\right\}+\sum_{j=0}^{f-1}\left\{\frac{\mu e_{2}^{\prime} p^{j}}{a b}\right\}+\sum_{j=0}^{f-1}\left\{\frac{\mu e_{3}^{\prime} p^{j}}{a b}\right\}=2 f
$$

however because $p^{v} \equiv-1 \bmod a$,

$$
\sum_{j=0}^{f-1}\left\{\frac{\mu e_{0}^{\prime} p^{j}}{a}\right\}+\sum_{j=0}^{f-1}\left\{\frac{\mu e_{1}^{\prime} p^{j}}{a}\right\}=f
$$

so we know that,

$$
\sum_{j=0}^{f-1}\left\{\frac{\mu e_{2}^{\prime} p^{j}}{a b}\right\}+\sum_{j=0}^{f-1}\left\{\frac{\mu e_{3}^{\prime} p^{j}}{a b}\right\}=f
$$

Define the sum,

$$
S(x)=\sum_{j=0}^{f-1}\left\{\frac{x p^{j}}{a b}\right\}
$$

The above gives the functional equation,

$$
S(x)+S(y)=f
$$

whenever $x+y \equiv 0 \bmod b$. In particular, if $x \equiv y \bmod b$ then $S(x)=S(y)$.
Let $\chi:(\mathbb{Z} / a b \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a Dirichlet character such that $\chi(H)=1$ and $\chi(-1)=-1$. This is possible assuming that $-1 \notin H$. Let m_{0} be the conductor of χ with a map $\varphi:(\mathbb{Z} / a b \mathbb{Z})^{\times} \rightarrow\left(\mathbb{Z} / m_{0} \mathbb{Z}\right)^{\times}$and $H_{0}=\varphi(H)$ and character $\chi_{0}:\left(\mathbb{Z} / m_{0} \mathbb{Z}\right)^{\times} \rightarrow \mathbb{C}^{\times}$inducing χ. Now define the sum,

$$
S_{0}(x)=\sum_{t \in \varphi(\langle p\rangle)}\left\{\frac{x t}{m_{0}}\right\}=\frac{1}{|\langle p\rangle \cap \operatorname{ker} \varphi|} \sum_{t \in\langle p\rangle}\left\{\frac{\left(a b / m_{0}\right) x t}{a b}\right\}=\frac{1}{|\langle p\rangle \cap \operatorname{ker} \varphi|} S\left(\frac{a b}{m_{0}} x\right)
$$

Thus, $S_{0}(x)=S_{0}(y)$ whever $m_{0} \mid a(x-y) \Longleftrightarrow x \equiv y \bmod \bar{m}_{0}=m_{0} /\left(m_{0}, a\right)$. Next, let $G=\left(\mathbb{Z} / m_{0} \mathbb{Z}\right)^{\times}$ and $K=\varphi(\langle p\rangle)$ and consider,

$$
\begin{aligned}
\sum_{x \in G} \chi_{0}(x) \frac{x}{m_{0}} & =\sum_{g H_{0} \in G / H_{0}} \sum_{h \in H_{0} / K} \sum_{x \in h g K} \chi_{0}(x) \frac{x}{m_{0}}=\sum_{g H_{0} \in G / H_{0}} \chi_{0}(g) \sum_{h \in H_{0} / K} \sum_{x \in g h K} \frac{x}{m_{0}} \\
& =\sum_{g H_{0} \in G / H_{0}} \chi_{0}(g) \sum_{h \in H_{0} / K} S_{0}(g h)
\end{aligned}
$$

since χ_{0} is trivial on H_{0} and thus descends to a nontrivial character on G / H_{0}. By Lemma 15.2, the surjective map,

$$
H \hookrightarrow(\mathbb{Z} / a b \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / a \mathbb{Z})^{\times}
$$

alows us to choose coset representatives of G / H_{0} which are all trivial under the map $\left(\mathbb{Z} / m_{0} \mathbb{Z}\right)^{\times} \rightarrow\left(\mathbb{Z} / m_{0} \mathbb{Z}\right)^{\times}$. Therefore, $g h \equiv h \bmod \bar{m}_{0}$ and thus,

$$
\sum_{x \in G} \chi_{0}(x) \frac{x}{m_{0}}=\sum_{g H_{0} \in G / H_{0}} \chi_{0}(g) \sum_{h \in H_{0} / K} S_{0}(h)=\left(\sum_{h \in H_{0} / K} S_{0}(h)\right) \cdot\left(\sum_{g H_{0} \in G / H_{0}} \chi_{0}(g)\right)=0
$$

since χ_{0} is a nontrivial character on G / H_{0}. This is a contradiction because,

$$
\sum_{g H_{0} \in G / H_{0}} \chi_{0}(g) \sim L\left(1 ; \chi_{0}\right) \neq 0
$$

16 Other Families

Theorem 16.1. Let X be the variety defined by,

$$
x_{0}^{a}+x_{1}^{a}+x_{2}^{b}+x_{3}^{a b}
$$

where a and b are coprime. Suppose that $\operatorname{ord}_{b}(p)$ is even. Then X is supersingular over \mathbb{F}_{p} if and only if $p^{v} \equiv-1 \bmod a b$ for some v.

Theorem 16.2. Let X be the variety defined by,

$$
x_{0}^{a}+\cdots+x_{k_{a}-1}^{a}+x_{k_{a}}^{b}+\cdots+x_{k_{a}+k_{b}}^{b}+x_{k_{a}+k_{b}+1}^{a b}+\cdots+x_{r}^{a b}
$$

where a and b are coprime and $k_{a}, k_{b} \geq 2$. Then X is supersingular over \mathbb{F}_{p} if and only if $p^{v} \equiv-1 \bmod a b$ for some v.

17 Conjectures

Lemma 17.1. If,

$$
S(a)=\sum_{i=0}^{f-1}\left\{\frac{a p^{j}}{m}\right\}=\frac{f}{2}
$$

for all a coprime to m then there does not exist a primitive character χ modulo m such that $\chi(-1)=-1$ and $\chi(p)=1$.

Lemma 17.2. If,

$$
S(a)=\sum_{i=0}^{f-1}\left\{\frac{a p^{j}}{m}\right\}=\frac{f}{2}
$$

for all $a \in \mathbb{Z} / m \mathbb{Z}$ then $p^{v} \equiv-1 \bmod m$ for some $v \in \mathbb{Z}$.

References

[1] S. Chowla, On Gaussian Sums, Proceedings of the National Academy of Sciences, 48 (7), 1127-8, 1962.
[2] R. Evans, Generalizations of a Theorem of Chowla on Gaussian Sums, Houston Journal of Mathematics, 3, 1977.
[3] N. Koblitz, p-adic variation of the zeta-function over families of varieties defined over finite fields, Compositio Mathematica, 31, 119-218, 1975.
[4] S. Lang, Algebraic Number Theory, Springer, 1994.
[5] T. Shioda, An example of Unirational Surfaces in Characteristic p, Mathematische Annalen, 221, 233236, 1974.
[6] T. Shioda, T. Katsura, On Fermat Varieties, Tohoku Math Journal, 31, 97-115, 1979.r
[7] A. Weil, Numbers of Solutions of Equations in Finite Fields, Bulletin of the American Mathematical Society, 55 (5), 497-508, 1949

